Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматин фосфорилирование

    По-видимому, на молекулярном уровне фаза М инициируется каскадом фосфорилирования белков, запускаемым при появлении М-стимулирующего фактора (MPF), и заканчивается при дефосфорилировании, которое возвращает белки в их интерфазное состояние (разд. 13.2.5). В свою очередь фосфорилирование белков в течение М-фазы, вероятно, ответственно за многие морфологические изменения, сопровождающие митоз, в том числе и за конденсацию хромосом, разрушение ядерной оболочки и изменения цитоскелета, описанные ниже. Первое хорошо видимое проявление наступающей фазы М состоит в постепенном уплотнении дисперсного интерфазного хроматина в нитевидные хромосомы. Эта конденсация хромосом необходима для их последующего упорядоченного расхождения в дочерние клетки и сопровождается фосфорилированием многочисленных молекул гистона П1, имеющихся в клетке (до шести фосфатных групп на одну молекулу Н1). Поскольку гистон П1 присутствует в количестве примерно одной молекулы на нуклеосому и известно, что он участвует в упаковке нуклеосом (разд. 13.2.5), то его фосфорилирование киназой MPF (разд. 9.1.12) в начале фазы М должно быть главной причиной конденсации хромосом. Такое молекулярное объяснение, пока еще гипотетическое, показывает, на каком уровне в конечном счете должен описываться весь клеточный цикл. [c.438]


    На основе описанных выше данных была сформулирована современная точка зрения, согласно которой основная функция гистонов состоит в том, чтобы обеспечить необходимую упаковку ДНК. Однако иногда гистон Н1 называют общим репрессором, удерживающим хроматин в компактно упакованном состоянии, препятствующем транскрипции. Поскольку процесс инициации митоза сопровождается фосфорилированием гистона Н1 при помощи специальной протеинкиназы, можно предположить, что этот гистон играет какую-то иную роль [ЗОО]. Другие гистоны, особенно Р4, подвергаются множеству модифицирующих воздействий, в том числе ацетилированию и фосфорилированию (обратимо) и -метилированию (необратимо) [301]. Значение этих реакций в регуляции таких процессов, как транкрипция и репликация, до сих пор неясно. [c.304]

    Общий характер действия на человека. А. относится к группе сравнительно малотоксичных металлов, способных, однако, вызывать серьезные сдвиги в организме при длительном воздействии. Токсичность А. проявляется во влиянии на обмен веществ, в особенности минеральный, на функцию нервной системы, в способности действовать непосредственно на клетки — их размножение и рост длительное вдыхание пыли А. и некоторых его соединений ведет к фиброзированию легочной ткани. В основе механизма многих проявлений интоксикации лежит действие А. непосредственно на ядерный хроматин, а также косвенно — путем замещения других элементов или изменения активности ряда ферментных систем. Избыток солей А. снижает задержку кальция в организме, уменьшает адсорбцию фосфора, что ведет к снижению уровня АТФ в крови и нарушению процессов фосфорилирования одновременно в 10-20 раз увеличивается содержание А. в костях, печени, семенниках, мозге и, особенно, паращитовидной железе. Для этой формы энцефалопатии специфичны симптомы слабоумия. Концентрация А. при этом в головном мозге, особенно в сером веществе, достигает очень больших значений. Существует гипотеза о возможной связи содержания А. в питьевой воде и вообще в окружающей человека среде с возникновением болезни Альцгеймера — формы старче- [c.422]

    В последнее время пол ены некоторые данные о молекулярных механизмах биологического действия пролактина. Первый этап этого процесса — специ4 че-ское взаимодействие лролактнна с рецепторами, протекающее в ткани молочной железы и в других органах. После связывания пролактина с рецептором в цитоплазматических мембранах и ядре индуцируется транскрипция РНК, необходимой для синтеза новых молекул протеинкиназы. Механизм стимуляции транскрипции пока не известен. Образсшавшаяся протеинкиназа способствует дальнейшему действию пролактина в молочной железе путем фосфорилирования специфических белков в мембранах, рибосомах, хроматине. [c.286]


    Время основного фосфорилирования гистона Н1 навело на мысль о том, что он может участвовать в митотической конденсации хромосом. Это согласуется с данными о необходимости гистона Н1 для образования нитей хроматина размером 30 нм (гл. 29). Некоторые температурочувствительные мутанты, дефектные по Н1-фосфори-лированию, не способны закончить репликацию ДНК и завершить деление клетки. Но такая корреляция не говорит ничего о том, является ли фосфорилирование причиной или сопутствующим событием митотической конденсации. [c.385]

    Важную роль в регуляции транскрипции генов могут играть, наконец, процессы фосфорилирования, метилирования и, возможно, дру1 ие посттрансляционные модификации негистоновых белков хроматина. Заметные изменения в наборах фосфорили-руемых и метилируемых негистоновых белков наблюдаются в ядрах нейронов и глиальных клеток неокортекса крыс в первые недели постнатального онтогенеза. При этом главное различие между ядрами нейронов и глиальных клеток состоит в большем метилировании группы специфических для нейронов негистоновых белков -100 кД. В ядрах нейронов и глии мозга мышей обнаружены протеинкиназная и метилазная активности, значительная часть которых прочно ассоциирована с хроматином. [c.18]

    Протеинкиназа осуществляет цАМФ-независимое фосфори-лирование белков хроматина. Ее активность в ядрах нейронов значительно выше, чем в ядрах глиальных клеток. При действии ряда нейромедиаторов на нейроны мозга крыс наблюдается фос4юрилирование ядерных белков и стимуляция синтеза РНК. Фосфорилирование части негистоновых (так называемых НМО) белков индуцируется в клетках верхнего шейного ганглия при действии фактора роста нервов. В хромаффинных клетках надпочечников фосфорилирование негистоновых белков хроматина цАМФ-зависимой протеинкиназой является центральным звеном в транссинаптической регуляции синтеза тирозин-З-мо-нооксигеназы ацетилхолином. Показано, что фосфорилирование негистоновых белков хроматина повышается при выработке оборонительных условных рефлексов. [c.18]

    НП оказывают глубокое воздействие и на другие уровни метаболизма клеток-мишеней. Установлены разнообразные их влияния на синтез РНК и белков. Рассматривая эти данные, следует учитывать несколько возможных механизмов. Во-первых, объектом фосфорилирования протеинкиназами, включаемыми при посредстве НП, могут бьггь белки-регуляторы трансляции и транскрипции. Во-вторых, значительные изменения содержания Са " ", да и других ионов, миграция которых возникает в результате модификации мембранных белков, Moiyr порождать другие процессы, ведущие в конечном счете к изменению скорости транскрипции тех или иных генов или к изменениям скорости трансляции (менее специфичным). В-третьих, наконец, заслуживает особого внимания установленное недавно явление интернализации рецептор-лигандных комплексов и сведения о наличии в оболочке ядра и в хроматине соединений, способных специфически связывать НП. Сама по себе интернализация комплекса лиганд-рецептор рассматривалась ра- [c.330]

    Индуцируемый тиролиберином тиротропин в свою очередь изменяет уровень фосфорилирования белков хроматина клеток щитовидной железы в транскрипционно активных зонах последнего. [c.332]

    Изменение интенсивности фосфорилирования ряда белков, в частности белков хроматина, РНК-полимеразы и рибосом может влиять на синтез некоторых нейроспецифических белков. В гл.З уже приводились данные о корреляции синтеза и содержания ряда нейроспецифических белков с формированием памяти. Среди таких белков наиболее исследованы два — белок 5-100 и белок 14-3-2. Оба белка считаются нейроспецифическими, так как их содержание в головном мозге значи-1ельно превышает количество, обнаруживаемое в любом другом органе (для 8-100 приблизительно в десять тысяч, а для 14-3-2 — в 100-200 раз). При этом показано, что белок 14-3-2 содержится главным образом в нейронах, а 8-100 — в клетках глии. Кроме того, 8-100 обнаружен в синапсах, что дает основание полагать, что он участвует в формировании связей между нейронами. [c.384]

    Включение синтеза новых белков может осуществляться посредством того же фосфорилирования (или, напротив, дефосфорилирования) белков хроматина, РНК-полимеразы или рибосомы. Значение синтеза белков для протекания процесса консолидации и формирования долговременной памяти общепризнанно. Доказательством этого служит, во-первых, то, что эти процессы нарушаются ингибиторами белкового синтеза, а, во-вто-рых, что в период, следующий за обучением, когда сначала упрочиваются продолжительные формьг ООП, а затем Происходит закрепление следа в ДП, наблюдается интенсификация процессов, связанных с синтезом белков. К таким процессам относится интенсивное включение лейцина и фукозы в некоторые белки, в частности в гликопротеиды. По данным Г.Маттиеса, интенсифи- [c.387]

    Конечно, только индукцией и репрессией синтеза ферментов не исчерпывается регуляция обмена веществ на уровне генетического аппарата клетки. Как репликация самой ДНК, так и синтез на ней в качестве матрицы разнообразных РНК, в том числе и мРНК, что, в значительной мере, предопределяет ход обмена веществ в клетке, зависит от множества других событий. Среди них—метилирование ДНК фосфорилирование и ацетилирование гистонов и негистоновых белков, входящих в состав хроматина взаимодействие с хроматином гормон-рецепторных комплексов аденилирование белков, участвующих в деятельности репликационного аппарата и др. Все они связаны с изменением метаболической активности генома, регуляцией его функций в целом. [c.477]



Смотреть страницы где упоминается термин Хроматин фосфорилирование: [c.238]    [c.238]    [c.136]    [c.235]    [c.598]    [c.136]    [c.357]    [c.361]    [c.196]    [c.65]    [c.189]    [c.65]    [c.147]    [c.313]    [c.46]    [c.85]    [c.207]    [c.450]    [c.301]    [c.81]    [c.221]   
Нейрохимия (1996) -- [ c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование



© 2025 chem21.info Реклама на сайте