Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протеинкиназа фосфорилирование

    Как отмечалось, эффект катехоламинов в значительной мере опосредован действием цАМФ, который активирует протеинкиназы тканей. При участии последних происходит фосфорилирование ряда белков, в том числе гликогенсинтазы и фосфорилазы Ь — ферментов, участвующих в обмене углеводов. Фосфорилированный фермент гликогенсинтаза сам по себе малоактивен или полностью неактивен, но в значительной мере активируется положительным модулятором глюкозо-6-фосфатом, который увеличивает фермента. Эта форма гликогенсинтазы называется [c.324]


    Более важную роль в регуляции играют, однако, факторы, определяемые стимулирующим действием гормонов и нервной системы. Если концентрация адреналина в крови повышается, то этот гормон начинает связываться с рецепторами на поверхности клеточных мембран, активируя образование циклического АМР (гл. 7, разд. Д, 8). Аналогично в печени рецепторы глюкагона связывают этот гормон и стимулируют образование циклического АМР. Циклический АМР в свою очередь активирует протеинкиназы, которые модифицируют различные белки, в том числе киназу фосфорилазы (Ei на рис. 11-10), а также гликоген-синтетазу. В покоящейся мышце киназа фосфорилазы находится в неактивной форме, и фосфорилирование протеинкиназой переводит ее в [c.507]

    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]

    Молекула киназы фосфорилазы состоит из субъединиц четырех типов ар б. Молекулярная масса фермента — 1,3-10 Да — отвечает формуле (аРуб)4- Киназа фосфорилазы играет, как показано, ключевую роль в регуляции обмена гликогена и в сопряжении гликогенолиза и мышечного сокращения. В скелетной мускулатуре она существует в двух молекулярных формах нефосфорилированной ( неактивированная ) и фосфорилированной ( активированная ). Первая активна лищь при pH 8,2, вторая — при pH 6,8 и 8,2. При активации фермента отнощение активностей, измеренных при pH 6,8/8,2, возрастает от 0,05 до 0,9—1,0. Активация киназы достигается фосфорилированием а- и р-субъединиц, которое катализирует цАМФ-зависимая протеинкиназа. Каталитическую роль выполняет -субъединица б-субъединица идентична a +- вязывaющeмy белку — кальмодулину. Ферментативная активность киназы фосфорилазы полностью зависит от ионов На р-субъединице фермента имеется регуляторный центр, обладающий высоким сродством к АДФ. Константа Михаэлиса для АТФ равна [c.223]


    Биологические эффекты этих вторичных мессенджеров реализуются по-разному. Действие диацилглицерола, как и свободных ионов Са , опосредовано через мембраносвязанный Са-зависимый фермент протеинкиназу С, которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1,4,5-трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са в цитозоль. [c.296]

    Под действием киназы фосфорилазы Ь, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы Ь подвергаются ковалентному фосфорилированию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние. [c.292]

    Осн. физиол. ф-ция А.-стимуляция биосинтеза и секреции стероидных гормонов корой надпочечников. Механизм действия включает специфич. связывание А. с рецепторами плазматич. мембраны клеток, стимуляцию в плазматич. мембране фермента аденилатциклазы, осуществляющей превращение АТФ в циклич. аденозинмонофосфат. Последний активирует в цитоплазме протеинкиназу, катализирующую серию р-ций фосфорилирования, в результате чего резко увеличивается скорость образования кортикостероидов, а также синтез специфич. белка, необходимого для стимуляции лимитирующей стадии синтеза стероидов - превращения холестерина в прегненолон. А. обладает также [c.37]

    Действующим началом, посредством которого циклические нуклеотиды оказывают свое влияние, является определенный класс ферментов — протеинкиназы. Как указывает название, эти ферменты катализируют фосфорилирование белковых субстратов (обычно ферментов). Каким именно образом протеинкиназы контролируют различные процессы, мох<но понять, вернувшись к проблеме секреции адреналина под действием страха. [c.141]

    Гликоген-синтаза также существует в двух формах-фосфорилированной и дефосфорилированной, но она регулируется реципрокно по отношению к гли-коген-фосфорилазе, т.е. прямо противоположным образом (рис. 20-11). Ее активная форма, гликоген-синтаза а, дефос-форилирована. В результате катализируемого протеинкиназой фосфорилирования за счет АТР по двум гидро- [c.614]

    Новые данные свидетельствуют о том, что в клетках фосфопротеины синтезируются в результате посттрансляционной модификации, подвергаясь фосфорилированию при участии протеинкиназ. Этот процесс подробно рассматривается в главе 14. Здесь лишь укажем на существенную роль специфической протеинкиназы, катализирующей фосфорилирование ОН-группы тирозина, в биосинтезе онкобелков. Таким образом, уровень фосфопротеинов в клетке зависит в значительной степени от регулирующего действия ферментов, катализирующих фосфорилирование (протеинкиназы) и дефосфорилирование (протеинфосфатазы). Следует отметить, что фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. Кроме того, они являются ценным источником энергетического и пластического материала в процессе эмбриогенеза и дальнейшего постна-тального роста и развития организма. [c.90]

    Др. тип регуляции активности ключевых ферментов-их хим. модификация (напр., обратимое ковалентное фосфорилирование, гликозилирование). Нек-рые ферменты активны в модифицированном, а ряд ферментов - в немодифици-рованном состоянии. Хим. модификация и превращение модифицированного фермента в исходную форму катализируются разными ферментами, чаще всего аллостерич. природы, к-рые, т. обр., выступают в роли регуляторов активности ферментов. Так, катализирующая фосфорилирование белков, в т. ч. ферментов, цАМФ-зависимая протеинкиназа-тетрамерный белок, состоящий из двух типов субъединиц (полипептидов). Фермент активен лишь после связывания двух молекул циклич. аденозинмонофосфата (цАМФ) с двумя регуляторными субъединицами в результате такого связывания фермент диссоциирует на две каталитически активные субъединицы и димер, с к-рым связаны две молекулы цАМФ. Т. обр., изменение активности ферментов путем их хим. модификации дополняет аллостерич. регуляцию и составляет часть каскадного механизма регуляции. Хим. модификацию ферментов осуществляют также специфич. протеазы, катализирующие ограниченный протеолиз и тем самым инактивирующие ферменты (напр., разрушая апоформы ферментов) или, наоборот, превращающие неактивные проферменты (напр., проферменты пищеварит. протеаз-пепсина и трипсина) в каталитически активные формы. [c.219]

    Известно несколько типов протеинкиназ, активируемых различными эффекторами. Субстраты протеинкиназ —огромное количество белков, фосфорилирование которых приводит к изменению их активности. Более того, обнаружены протеинфосфатазы, которые, осуществляя гидролиз фосфатной группы, возвращают белковую молекулу в исходное состояние. Во многих случаях мишенью действия киназ являются другие киназы, которые фосфорилируют фосфатазы, в свою очередь регулируя их функцию. Таким образом, регуляция метаболизма имеет каскадный характер. [c.318]


    Следует отметить, что в клетках открыт большой класс цАМФ-зависи-мых протеинкиназ , названных протеинкиназами А они катализируют перенос фосфатной группы на ОН-группы серина и треонина (так называемые серин-треонин-киназы). Другой класс протеинкиназ, в частности активируемый инсулиновым рецептором (см. ранее), действует только на ОН-группу тирозина. Однако во всех случаях добавление высокозарядной и объемной фосфатной группы вызывает не только конформационные изменения фосфорилированных белков, но изменяет их активность или кинетические свойства. [c.292]

    Для одной из каскадных ферментных систем механизм, останавливающий развитие каскадного эффекта, известен. Гликогенфосфорилаза мышц активируется каскадной последовательностью ферментов, которая включается в результате контролируемого вегетативной нервной системой высвобождения адреналина (гл. 16, разд. Б, 3). Связывание адреналина мембраной клетки приводит к высвобождению сАМР, активирующего протеинкиназу. Киназа катализирует фосфорилирование другого фермента — киназы фосфорилазы. В этот момент мышцы готовы к быстрому расщеплению гликогена. Однако непосредственным сигна- [c.72]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    Стимулируя действие фосфорилазы при помощи серии описанных выше механизмов, циклический АМФ активирует также протеинкиназу, после чего она начинает фосфорилировать активную форму (1-форму, или независимую форму) гликогенсинтетазы. При этом фосфорилиро-ванная форма гликогенсинтетазы (D-форма, или зависимая форма) неактивна в отсутствие специфического активатора. Таким образом, инициирование фосфоролиза гликогена сопровождается ингибированием дальнейшего синтеза гликогена. Фосфорилированная форма гликогенсинтетазы (D-форма) аллостерически активируется глюкозо-6-фосфа-том. Следовательно, если имеет место быстрое повышение содержания метаболита, то это не только ингибирует фосфорилазную реакцию, но также стимулирует синтез гликогена, даже если вся гликогенсинтетаза превращена в неактивную форму (D-форму). [c.509]

    В механизме действия П. (как и мн. др. пептидно-белковых гормонов) на его начальном этапе принимают участие специфич. рецептор плазматич. мембраны клетки-мишени, аденилатциклаза, циклич. аденозинмонофосфат (цАМФ) и протеинкиназа. Активация аденилатциклазы (при воздействии П. на рецептор) приводит к образованию внутри клеток цАМФ, к-рый активирует фермент протеинкиназу, осуществляющую фосфорилирование функционально важных белков, и таким образом запускает ряд биохим. р-ций, обусловливающих в конечном счете физиол. эффект гормона. [c.446]

    Химическая модификация фермента. Некоторые белки при формировании третичной структуры подвергаются постсинтетической химической модификации (см. главу 1). Оказалось, что активность ряда ключевых ферментов обмена углеводов, в частности фосфорилазы, гликогенсинтазы и др., также контролируется путем фосфорилирования и дефосфорили-рования, осуществляемого специфическими ферментами—протеинкиназой и протеинфосфатазой, активность которых в свою очередь регулируется гормонами (см. главу 10). Уровень активности ключевых ферментов обмена углеводов и соответственно интенсивность и направленность самих процессов обмена определяются соотнощением фосфорилированньгх и де-фосфорилированных форм этих ферментов. [c.154]

    На основе описанных выше данных была сформулирована современная точка зрения, согласно которой основная функция гистонов состоит в том, чтобы обеспечить необходимую упаковку ДНК. Однако иногда гистон Н1 называют общим репрессором, удерживающим хроматин в компактно упакованном состоянии, препятствующем транскрипции. Поскольку процесс инициации митоза сопровождается фосфорилированием гистона Н1 при помощи специальной протеинкиназы, можно предположить, что этот гистон играет какую-то иную роль [ЗОО]. Другие гистоны, особенно Р4, подвергаются множеству модифицирующих воздействий, в том числе ацетилированию и фосфорилированию (обратимо) и -метилированию (необратимо) [301]. Значение этих реакций в регуляции таких процессов, как транкрипция и репликация, до сих пор неясно. [c.304]

    В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток , образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу. Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-- 1-фосфата (см. главу 10), в то время как фосфорилирование гликогенсинтазы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови. [c.272]

    Фосфорилирование некоюрых ре1уляторных ферментов может осуществляться без участия сАМР и сАМР-зависимой протеинкиназы. Фосфорилирование этих ферментов зависит от таких метаболических сигналов, как изменение соотнощения [АТР]/[АОР] (пример пируватдегидрогеназа рис. [c.214]

    Представители мембранных Р.б., обладающие собств. ферментативной активностью,-рецепторы инсулина и разл. факторов роста. Эти Р.б.-протеинкиназы (регулируют активность разл. белков путем их фосфорилирования), фосфорилирующие белки по остаткам тирозина. Специфич. гормоны стимулируют протеинкиназную активность н ауто-фосфорилированйе молекул рецепторов, что необходимо для преобразования ими регуляторных сигналов. [c.263]

    Таким образом, представленные данные о вторичных мессенджерах свидетельствуют о том, что каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ, хотя нельзя исключить возможности существования тесной связи между этими системами. Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G-цГМФ Са -кальмодулинзависимые протеинкиназы находятся под контролем внутриклеточной [Са ], а протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мессенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки ионных каналов, внутриклеточных структурных элементов и генетического аппарата. [c.297]

    Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков 1) рецептор гормона 2) фермент аденилатциклаза, выполняющая функцию синтеза циклического АМФ (цАМФ) 3) G-белок, осуществляющий связь между аденилатциклазой и рецептором 4) цАМФ-зависимая протеинкиназа, катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность 5) фосфодиэстераза, которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала (рис. 8.5). [c.290]

    К каиб. распространенным модификациям внутриклеточных белков относятся фосфорилирование и дефосфорилиро-вание по группе ОН остатков серина, тирозина и треонина, к-рые осуществляются с участием ферментов протеинкиназ и фосфатаз по схеме  [c.103]

    Киназа фосфорилазы — очень крупный фермент с мол. весом 1,3 млн., содержащий три типа субъединиц и имеющий, вероятно, состав а4Р4У4- Протеинкиназа, активность которой зависит от циклической АМР, фосфорилирует как а- так и р-субъедиии-цы, причем фосфорилирование именно 3-субъединиц, по-вндимому, ответственно за активацию [49, 49а]. Киназа фосфорилазы может подвергаться также самоактивации, включающей фосфорилирование тех участков, на которые не действует протеинкина-за [49а]. [c.508]

    Данные о механизме действия АКТГ на синтез стероидных гормонов свидетельствуют о сугцественной роли аденилатциклазной системы. Предполагают, что АКТГ вступает во взаимодействие со специфическими рецепторами на внешней поверхности клеточной мембраны (рецепторы представлены белками в комплексе с другими молекулами, в частности с сиаловой кислотой). Сигнал затем передается на фермент аденилатцикла-зу, расположенную на внутренней поверхности клеточной мембраны, которая катализирует распад АТФ и образование цАМФ. Последний активирует протеинкиназу, которая в свою очередь с участием АТФ осуществляет фосфорилирование холинэстеразы, превращающей эфиры холестерина в свободный холестерин, который поступает в митохондрии надпочечников, где содержатся все ферменты, катализирующие превращение холестерина в кортикостероиды. [c.259]

    Так же как и другие киназы, протеинкиназа и киназа фосфорилазы требуют для своей активности ионы магния. Кроме того, киназа фосфорилазы в своей неактивной форме аллостерически активируется ионами кальция. Напомним, что инициирование процесса мышечного сокращения вызывается нервными импульсами, которые стимулируют освобождение ионов кальция из пузырьков эндоплазматического ретикулума. Таким образом, ионы кальция не только включают процесс мышечного сокращения, но и ускоряют процесс фосфорилирования фосфорилазы Ь в фосфорилазу а. Теперь некоторые этапы каскадного механизма становятся яснее. Оказывается, что наиболее важная стадия, катализируемая киназой фосфорилазы, нужна для того, чтобы дать возможность реализоваться следующей стадии, на которую оказывают специфическое влияние ионы кальция, освобождающиеся при нервном возбуждении. С другой стороны, возможность активации киназы фосфорилазы в результате фосфорилирования протеинкиназой делает процесс чувствительным к гормональной стимуляции. [c.509]

    Этот фермент катализирует превращение АТР в циклический АМР (циклический аденозинмонофосфат, или сАМР). Химические аспекты этой реакции обсуждаются в гл. 7, разд. Д, 8. Циклический АМР иногда называют вторым посредником ( se ond messenger ), поскольку он переносит сообщение (message), доставленное клетке первым посредником (гормоном). Циклический АМР быстро гидролизуется до АМР фосфодиэстеразой (стадия б на схеме см. также гл. 7, разд. Д, 8). Однако пока сАМР существует, он действует как аллостерический эффектор по отношению к протеинкиназам (стадия в на схеме), которые катализируют такие реакции модификации, как фосфорилирование гликогенсинтетазы (см. предыдущий раздел, а также гл. 11, разд. Е, 3). [c.70]

    О-белки делятся на несколько типов, причем один из них выполняет стимулирующую, а остальные-ингибирующую функции. Взаимодействие соответствующего О-белка с ферментом-усилителем сигнала приводит к изменению свойств фермента и соответственно к изменению его активности. В случае циклического АМФ (рис. 9.11) возможна как активация аденилатциклазы, так и ее ингибирование (в зависимости от типа О-белков, участвующих в трансформации сигнала). Итогом будет изменение скорости синтеза цитоплазматического цАМФ-активатора протеинкиназ, регулирующих функцию клеточных белков в результате их фосфорилирования. В неактивном состоянии протеинкиназа представляет собой димер из [c.317]

    Функции, выполняемые сАМР в клетках, весьма разнообразны. Аллостерическая активация протеинкиназ влияет на целый ряд ферментов, связанн >]х с энергетическим обменом. Фосфорилированию подвергаются не только гистоны — белкн клеточного ядра, о и белки мембран [79а], мпкроканальцев и рибосом [79Ь] (гл. 15, разд. И, 2). В клетках с различной специализацией один и тот же механизм может привести к совершенно разным эффектам ниже мы рассмотрим несколько конкретных примеров такого рода. [c.71]

    Репрессия трансляции под действием двуспиральной РНК. В лизате ретикулоцитов двуцепочечные РНК, включая как двуспиральные фрагменты вирусного происхождения (полиовируса или реовирусов), так и синтетические комплексы поли(А) поли(и) или поли(1) поли(С), вызывают ингибирование синтеза белка в присутствии гемина, похожее по всем признакам на репрессию, вызываемую отсутствием гемина. Двуцепочечная РНК, которая оказывает такое воздействие на трансляцию, должна состоять не менее, чем из 50 пар нуклеотидных остатков. Оказалось, что, так же как и в результате отсутствия гемина, в присутствии такой двуцепочечной РНК происходит активация ингибитора инициации, обозначаемого как dsl, и этот ингибитор тоже является протеинкиназой, фосфорилирующей а-субъединицу eIF-2. В отличие от H I, однако, dsl связан с рибосомными частицами и представляет собой белок с молекулярной массой около 67000 дальтон. Активация ингибитора требует АТФ и происходит как результат автофосфорилирования белка. Именно автофосфорилирование индуцируется взаимодействием белка с двуцепочечной РНК. По-видимому, механизм репрессии инициации под действием активированного dsl во всем аналогичен таковому в случае H I и заключается в изменении взаимодействия eIF-2 в результате его фосфорилирования с дополнительным белком eIF-2B (см. выше). [c.262]

    Субстратами протеинкиназ являются разнообразные белки, фосфорилирование которых изменяет их активность. Например, активация протеинкиназы А со стороны цАМФ приводит к фосфорилированию гликогенсинтазы и гликогенфосфорилазы. При этом активность первого фермента подавляется, а второго усиливается (см. главу 10). Таким образом, появление в кровяном русле адреналина, активирующего аденилатциклазу миоци-тов, улучшает энергетическое обеспечение сокращений сердечной мышцы. [c.318]

    Получены доказательства, что большинство эффектов цГМФ опосредовано через цГМФ-зависимую протеинкиназу, названную протеинкиназой С. Этот широко распространенный в эукариотических клетках фермент получен в чистом виде (мол. масса 80000). Он состоит из 2 субъединиц -каталитического домена с последовательностью, аналогичной последовательности С-субъединицы протеинкиназы А (цАМФ-зависимой), и регуляторного домена, сходного с К-субъединицей протеинкиназы А (см. ранее). Однако протеинкиназы А и С узнают разные последовательности белков, регулируя соответственно фосфорилирование ОН-группы серина и треони- [c.295]

    Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая—нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием катехоламинов. [c.403]

    Протеинкиназа-это внутриклеточный фермент, через который цАМФ реализует свой эффект. Протеинкиназа может существовать в 2 формах. В отсутствие цАМФ Протеинкиназа представлена в виде тетрамерного комплекса, состоящего из двух каталитических (С,) и двух регуляторных (К,) субъединиц с мол. массами 49000 и 38000 соответственно в этой форме фермент неактивен. В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну К,-субъединицу и две свободные каталитические субъединицы С последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность. [c.291]

    Активность бифункционального фермента регулируется также некоторыми метаболитами, среди которых наибольшее значение имеет гли-церол-З-фосфат. Действие глицерол-З-фосфата на фермент по своей направленности аналогично эффекту, который наблюдается при его фосфорилировании с помощью цАМФ-зависимых протеинкиназ. [c.342]

    Образовавшийся цАМФ активирует фермент протеинкиназу (КФ 2.7.1.37), который путем фосфорилирования неактивной триглицеридлипазы превращает ее в активную форму (рис. 11.1). Активная триглицеридлипаза расщепляет триглицерид на диглицерид и жирную кислоту. Затем при действии ди- и моноглицеридлипаз образуются конечные продукты липо-лиза —глицерин и свободные жирные кислоты, которые поступают в кровяное русло. [c.371]


Смотреть страницы где упоминается термин Протеинкиназа фосфорилирование: [c.72]    [c.142]    [c.143]    [c.32]    [c.598]    [c.44]    [c.263]    [c.153]    [c.262]    [c.270]    [c.554]   
Нейрохимия (1996) -- [ c.337 , c.339 , c.340 , c.347 , c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Протеинкиназы, фосфорилирование компонентов мембраны

Фосфорилирование



© 2025 chem21.info Реклама на сайте