Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорилирование в процессе брожения

    Итак, брожение — это способ получения энергии, при котором АТФ образуется в процессе анаэробного окисления органических субстратов в реакциях субстратного фосфорилирования. [c.209]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]


    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    В процессе второго субстратного фосфорилирования образуется еще молекула АТФ в итоге общий энергетический выигрыш процесса составляет 2 молекулы АТФ на 1 молекулу глюкозы. Такова энергетическая сторона процесса гомоферментативного молочнокислого брожения. [c.214]

    В результате фосфорилирования, сопряженного с переносом электронов при дыхании аэробных организмов, образуется намного больше АТР, чем при фосфорилировании на уровне субстрата при брожении поэтому неудивительно, что в процессе биохимической эволюции возник и в дальнейшем сохранился такой тип метаболизма, при котором водород от органического субстрата переносится на связанный кислород . При этом носителями кислорода могут быть нитрат, сульфат, карбонат или другие соединения они восстанавливаются водородом субстрата. Способность переносить электроны на эти соединения дает бактериям возможность окислять субстраты без участия молекулярного кислорода и таким образом извлекать больше энергии, чем это возможно при брожении. [c.304]

    При брожении некоторые реакции на пути анаэробного преобразования субстрата связаны с наиболее примитивным типом фосфорилирования — субстратным фосфорилированием. К синтезу АТФ по механизму субстратного фосфорилирования ведут катаболичесше реакции, которые в зависимости от своей химической природы могут быть разделены на два типа. Большинство относится к окислительно-восстановительным реакциям. Богатые энергией соединения возникают в процессе брожения на этапах анаэробного окисления. Например, окисление фосфогли-церинового альдегида (ФГА), катализируемое ФГА-дегидрогена-зой, приводит к образованию богатого энергией метаболита — 1,3-дифосфоглицериновой кислоты (1,3-ФГК). Анаэробное окисление пировиноградной или а-кетоглутаровой кислот приводит к образованию высокоэнергетических метаболитов — ацетил-КоА или сукцинил-КоА соответственно. [c.207]


    Электрохимическая энергия протонного градиента, возникающая при вьщелении из клетки кислот в процессе брожения, может использоваться для транспорта в нее растворимых веществ, а также для синтеза АТФ, который осуществляется при функционировании протонной АТФазы в обратном направлении, т.е. в АТФ-синтазной реакции. Выход энергии за счет вьщеления из клетки продуктов брожения может быть довольно значительным. При гомоферментативном молочнокислом брожении, по проведенным подсчетам, он может достигать 30 % от общего количества энергии, вырабатываемой клеткой. Таким образом, у некоторых эубактерий, получающих энергию в процессе брожения, АТФ может синтезироваться в реакциях субстратного фосфорилирования и дополнительно за счет использования Арн+. образующегося при выходе конечных продуктов брожения в симпорте с протонами. Следовательно, эубактерии с облигатно бродильным типом энергетики уже имеют протонные АТФазы, функционирующие в направлении гидролиза и синтеза АТФ, т.е. катализирующие обратимое взаимопревращение двух видов метаболической энергии  [c.350]

    Единство и теснейшая связь процессов брожения и дыхания растений, микроорганизмов и животных вытекают из того факта, что почти у всех живых организмов имеются одинаковые ферменты и те же основные промежуточные продукты, которые образуются в процессе их жизнедеятельности. Начальные этапы распада углеводов при анаэробном и аэробно.м дыхании одинаковы и начинаются с образования фосфорных эфиров глюкозы, именно глюкозо-1-фосфата, глюкозо-6-фосфата и фруктозо-1,6-дифосфата. Фосфорилирование глюкозы является необходимым условием как при аэробном распаде углеводов до углекислого газа и воды во время дыхания, так и при распаде углеводов в анаэробных условиях с образованием молочной кислоты и спирта. Пути аэробного и анаэробного распада углеводов расходятся на стадии образования пировиноградной кислоты в животные тканях или соответственно уксусного альдегида в дрожжевых клетках. Пировиноградная кислота занимает центральное положение в обмене углеводов. Она образуется из глюкозы (после фосфорилирования) или из гликогена (после фосфоролиза) путем нормального гликолиза. В анаэробных условиях пировиноградная кислота либо распадается в результате прямого декарбоксилирования, как это наблюдается в дрожжах, либо восстанавливается водородом до молочной кислоты, как это имеет место в мышцах. Спирт и молочная кислота являются конечными продуктами анаэробного обмена. В аэробных условиях пи-роаиноградная кислота полностью окисляется до углекислого газа и воды, [c.339]

    Весь процесс брожения может быть разделен на несколько этапов. Он начинается с фосфорилирования сахаров под действием находящегося в дрожжевом соке фосфорилирующего кофермента, носящего название адениловой системы. [c.245]

    Начало биохимическому подходу к изучению обмена веществ было положено исследованиями катаболизма и в особенности дыхания и брожения. При этом биохимики условились при изучении окислительно-восстановительных потенциалов обозначать окислительный потенциал как - -ие, тогда как физикохимики обычно обозначают окислительный потенциал как —ае. Подобным же образом, в термодинамике биохимиков интересует теплота сгорания тех или иных соединений и в качестве исходных продуктов они рассматривают продукты полного сгорания (СО2 и Н2О). Для физикохими-ков же исходным состоянием является состояние элементов при стандартных условиях. Таким образом, макроэргические соединения обладают сравнительно большой теплотой сгорания, но сравнительно малой теплотой образования. В этом смысле жиры и углеводы— это макроэргические соединения. Однако Липман использовал свой термин только применительно к тем соединениям, при гидролизе которых происходит значительное изменение свободной энергии. Поскольку, как оказалось, современные методы дают более низкие значения для свободной энергии гидролиза, в настоящее время наибольшее внимание уделяется ангидридосоединениям. Проблема анаболизма в значительной степени является проблемок создания ангидридных связей в водном окружении клетки. Процесс окислительного фосфорилирования, при котором из АДФ и неорганического фосфата (Фн) образуется АТФ, рассматривается в гл. 5, но здесь мы хотим обратить внимание читателя на возможное значение окислительного фосфорилирования в липидных мембранах митохондрий. [c.89]

    Многие исследователи работали над вопросами спиртового брожения. Л. А. Иванов впервые установил в 1903 г. участие фосфорной кислоты в процессах брожения и показал, что стимулирующее действие фосфата сводится к тому, что образуется промежуточное соединение фосфорной кислоты (фосфорные эфиры), способное к дальнейшим превращениям. Этот процесс, получивший название фосфорилирования, является промежуточной стадией брожения. Кроме того, в присутствии неорганических соединений фосфора скорость брожения быстро возрастает. В дальнейшем было установлено, что независимо от того, какой гексозный сахар был взят для брожения, в результате фосфорилирования образуется дифосфат фруктозы. Роль фосфора в этих процессах изучали также английские ученые А. Гарден и Т. Юнг (1905). Они разработали схему спиртового брожения, включающую образование фосфорных эфиров. А. И. Лебедев (1881 — 1938) открыл многие основные этапы спиртового брожения, используя дрожжевой сок, полученный по его методу. Для разделения смеси ферментов А. И. Лебедев применял ультрафильтрацию через желатиновые фильтры. Он совершенно верно определил роль кофермента как передатчика водорода при процессах брожения. В настоящее время установлено, что коферменты состоят из комплекса различных веществ. В результате своих исследований [c.534]


    Один из основателей молекулярной биологии в СССР. В ходе изучения закономерностей нревраще-ния фосфорных соединений в процессах клеточного обмена веществ обнаружил (1931) связь клеточного дыхания и фосфорилирования. Открыл (1939) аденозинтри-фосфатазпую активность миозина. Объяснил (1949) механизм сопряжения процессов брожения и дыхания (эффект Пастера). Осуществлял систематические исследования по химии и технологии производства витаминов и аденозинтрифосфорной кислоты. Изучает (с 1960) структуру и функции нуклеиновых кислот и ферментов биосинтеза белков. Организовал (1972—1973) исследование по обратной транскрипции — проект Ревертаза . Много внимания уделяет методическим и философским проблемам молекулярной и теоретической биологии. [c.596]

    На следующей стадии происходит гидролиз этого эфира, приводящий к образованию пировиноградной кислоты . Этот гидролиз сопряжен с фосфорилированием АДФ неорганическим фосфатом с образованием АТФ. На этой стадии на каждую молекулу окисленной глюкозы образуется две молекулы пировиноградной кислоты и накапливается две молекулы АТФ. Процесс брожения заканчивается декарбоксилированием пировиноградной кислоты с образованием ацетальдегида и СОд. Наконец, ацетальдегид восстанавливается в этанол, чт о происходит благодаря повторному окислению одной молекулы НАД-Н в НАД" . Следовательно, суммарную реакцию брожения следует описывать уравнением [c.65]

    Пути получения энергии. Сульфатвосстанавливающие бактерии могут получать энергию для роста разными способами. Некоторые виды растут на средах с органическими субстратами без сульфатов. В этом случае единственным источником энергии служит процесс брожения, при котором АТФ синтезируется в реакциях субстратного фосфорилирования. Основными субстратами являются пируват, лактат, этанол, при сбраживании которых выделяется молекулярный водород. [c.349]

    Спиртовое брожение, осуществляемое дрожжами, интересно тем, что на нем впервые были сделаны открытия, имеющие принципиальное значение. Именно при изучении спиртового брожения Л. Пастер доказал, что оно является процессом, связанным с жизнедеятельностью определенных микроорганизмов — дрожжей. Л. Пастер открыл, что в условиях свободного доступа кислорода воздуха процесс спиртового брожения ингибируется и активируется дыхание. Это явление получило название эффекта Пастера . Эффект Пастера есть результат определенного взаимодействия между различными энергетическими путями, существующими у дрожжей. Одним из проявлений такого взаимодействия является конкуренция за АДФ и неорганический фосфат между процессами субстратного фосфорилирования гликолитического пути и окислительного фосфорилирования в дыхательной цепи. [c.220]

    Представление о том, что первыми формами жизни были анаэробы, получающие энергию в процессе брожения.за счет субстратного фосфорилирования, хорошо согласуется с общей теорией происхождения жизни, выдвинутой А. И. Опариным. Наиболее древними из суще- [c.365]

    Субстратное фосфорилирование является единственным способом синтеза АТФ в процессах брожения, посредством которых многие микроорганизмы получают химическую энергию из глюкозы и других субстратов в отсутствие молекулярного кислорода. [c.46]

    Для того чтобы два тесно сопряженных между собой процесса—перенос электронов и гликолиз, каждый из которых нуждается в АДФ,— могли функционировать непрерывно, количество АДФ в системе должно быть достаточно большим. Если отношение АДФ/АТФ в клетке понизится, то замедление реакции должно, по-видимому, начаться сначала в той системе, которая обладает меньшим сродством к АДФ. Поскольку ферменты системы гликолиза имеют более высокую константу Михаэлиса для АДФ, чем ферменты дыхательной цепи, то можно предсказать, что в аэробных условиях, когда АДФ легко превращается в АТФ в ходе реакции окислительного фосфорилирования, процесс гликолиза начнет замедляться и затем совсем прекратится. Подавление брожения воздухом фактически впервые обнаружил Пастер. Однако высказывались и другие предположения относительно механизма этого явления, получившего название эффекта Пастера. Так, например, ортофосфат требуется для окислительного фосфорилирования и в то же время служит субстратом для гликолити чес кого фермента глицеральдегид-З-фосфатдегидрогена-зы. Следовательно, убыль фосфата в результате окислительного фосфорилирования может привести к торможению гликолиза. Другая интерпретация эффекта Пастера вытекает из попытки ответить на вопрос почем,у злокачественные ткани образуют в аэробных условиях в значительных количествах лактат, в то время как нормальные ткани этим свойством не обладают В этом случае происходит нарушение того механизма регуляции, с которым мы уже познакомились. Этот эффект можно объяснить по аналогии [c.55]

    Молекулярный водород образуется в процессе анаэробного распада ор-ганичес1Ь1х веществ в осадках водоемов и в анаэробных участках почвы. Многие бактерии способны к использованию этого водорода. Значительная часть его подвергается окислению теми бактериями, которые живут в сообществе с выделяющими Нз организмами, осуществляющими брожение. Ощсление Н2 такими бактериями сопровождается восстановлением сульфата до сульфида или СО2 до метана (см. разд. 9.4). Почти во всех группах бактерий, синтезирующих АТР путем окислительного фосфорилирования в анаэробных условиях ( анаэробное дыхание ), есть формы, способные использовать молекулярный водород в качестве донора электронов (см. гл. 9, а также табл. 11.4). [c.357]

    Так, можно считать доказанным, что при повышении степени организации эффективность использования энергии увеличивается. Гузман-Баррон отметил, что способ, которым низшие организмы снабжают себя энергией, именно непосредственно окислением глюкозы, наименее эффективен. Более высокой степени организации отвечает окислительное фосфорилирование, а процессы брожения и окисления, свойственные еще более высокоорганизованным существам, соответствуют наилучшет му использованию энергии и наименьшим потерям. В связи с этим интересно рассмотреть результаты исследований Кальве и Прата [13], разработавших оригинальную аппаратуру для измерения малых тепловых эффектов. В монографии этих авторов приведены данные по термогенезу в различных системах и указаны величины тепловых эффектов, рассчитанных на час. Если термогенез прорастающего зерна принять условно за 1, то получаются следующие интересные цифры  [c.35]

    Представление о том, что первыми формами жизни были анаэробы, получающие энергию в процессе брожения за счет субстратного фосфорилирования, согласуется с общей теорией происхождения жизни, выдвинутой А. И. Опариным и Дж. Холдейном. Наиболее древними из существующих эубактерий, вероятно, являются группы организмов, получающие энергию в результате функционирования гликолитического пути сбраживания углеводов. Можно предполагать, что гликолиз — первый сформированный механизм получения клеточной энергии. (Вероятно, гликолизу — сложной системе последовательных ферментативных реакций — предшествовали более простые пути получения энергии. Однако нет четких доказательств существования среди современных эубактерий форм с энергетическим метаболизмом догликолитического типа.) Основная проблема на этом этапе сводилась к тому, чтобы создать ловушки для возникающего при окислительных преобразованиях субстрата водорода. [c.437]

    Исследования Гардена и Йонга показали, что в экстракте дрожжей содержатся какие-то термостабильные, относительно небольшие органические молекулы, присутствие которых необходимо для брожения. Одно из таких соединений, необходимых для брожения, позднее было идентифицировано как АТФ, за счет которого, как мы уже видели, происходит фосфорилирование глюкозы на самых первых этапах брожения. Другое необходимое для брожения соединение — это никотинамидаденин-динуклеотид (НАД), идентифицированный в начале 30-х годов. Структура этого соединения приведена на фиг. 29. Как можно видеть, в молекулу НАД входит связанный с фосфорилированной рибозой никотинамид, в шестичленном цикле которого имеется положительно заряженный атом азота. Эта часть НАД по своей структуре формально аналогична рибону-клеотиду (фиг. 18). В молекуле никотинамидадениндинуклеотида рибонуклеотид связан фосфодиэфирной связью с аденозинмонофосфатом (АМФ), образуя динуклеотид. Отсюда и произошло название этого соединения. Если молекула НАД получает два атома водорода (что возможно при окислении какой-либо молекулы, например при окислении фосфоглицеринового альдегида в фосфоглицериновую кислоту на рассматриваемой нами стадии процесса брожения), то никотинамидная часть НАД восстанавливается — происходит насыщение одной из двойных связей шестичленного цикла (фиг. 29). Такая восстановленная форма НАД обозначается как НАД Н. Восстановленный НАД Н может быть позднее [c.63]

    Наиболее древнее происхождение имеет, вероятно, протонная АТФаза. Она обнаружена в клетках всех организмов, в том числе и у первичных анаэробов-бродильщиков, синтезирующих АТФ в реакциях субстратного фосфорилирования. Гипотетические первичные клетки получали всю энергию за счет субстратного фосфорилирования и имели слаборазвитые биосинтетические способности. Поступление необходимых органических соединений из внешней среды и выделение конечных продуктов брожения происходило по механизму пассивного унипорта (см. рис. 26). Первичные клетки, вероятно, не имели клеточной стенки, а были отграничены от окружающей среды только элементарной мембраной. Очевидно, что активные транспортные процессы, обеспе- [c.348]

    Один из основателей молекулярной биологии в СССР. В ходе изучения закономерностей превращения фосфорных соед. в процессах клеточного обмена в-в обнаружил (1931) связь клеточного дыхания и фосфорилирования. Открыл (1939) аденозинтрифосфатазную активность миозина. Объяснил (1949) механизм сопряжения процессов брожения и дыхания (эффект [c.524]

    Процессы микробиологического получения органических кислот иногда называют аэробным брожением. Однако такое определение не отражает физиологического смысла этого процесса для самого микроорганизма-продуцента. Согласно современным представлениям брожение определяется как тип метаболизма без участия молекулярного кислорода, при котором АТР образуется путем субстратного фосфорилирования. В свете этого процессы микробиологического синтеза уксусной, глюконовой, лимонной, фумаровой и ряда других органических кислот не могут быть определены как процессы брожения, поскольку их продуценты — аэробы и образование кислот осуществляется в условиях интенсивной аэрации. Указанные кислоты являются промежуточными продуктами метаболизма соединений углерода, в том числе интермедиатами цикла трикарбоновых кислот. Микробиологические [c.495]

    У прокариот известны три способа получения энергии разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта группа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения, запасается в молекулах АТФ, получили название субстратного фосфорилирования. Их особенностью является катализирование растворимыми ферментами и поэтому возможность протекания в растворе. В клетке реакции субстратного фосфорилирования не связаны с мембранными структурами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД-Нг, восстановленный ферредоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (На). [c.81]

    При недостатке кислорода использование НАД-На для биосинтеза АТФ по пути окислительного фосфорилирования невозможно, и регенерация НАД, необходимого для процесса, из НАД-На происходит путем восстановления пировиноградной кислоты или продуктов ее превращения. Так, при гликолизе в работающей мышце пировиноградная кислота XI превращается в -молочную кислоту (реакция 13). При спиртовом брожении сначала происходит декарбоксилирование, а образующийся ацетальдегид пеоеходит затем в этанол (реакции 14—15). [c.369]

    Наряду с субстратным фосфорилированием запасание энергии в процессах брожения может осуществляться путем формирования ТЭП. Так, некоторые облигатно анаэробные бактерии, осуществляющие брожения с образованием метилмалонил-СоА, способны формировать градиент ионов Na (ApNa) в процессе декарбоксилироеания этого соединения в пропионид-СоА (рис. 22). [c.57]

    Некоторые катаболические процессы зависят от ADP. Однако при высокой интенсивности метаболизма концентрация ADP может сильно уменьшиться из-за почти полного его фосфорилирования с образованием АТР. В этих условиях лимитирующими в соответствующих последовательностях реакций могут стать реакции, использующие ADP. Снижение уровня реагента способно привести также к полному изменению картины метаболизма. Так, если дрожжи лишены кислорода, то происходит накопление восстановленного кофермента NADH, который восстанавливает пировиноградную кислоту до молочной (гл. 7, разд. А, 6), т. е. наблюдается переход от окислительного метаболизма к брожению. [c.65]

    Дегидрогеназы а-кетокислот продуцируют производные СоА, кото рые могут вступать в биосинтетические реакции. С другой стороны, ацилпроизводные СоА могут расщепляться с образованием АТР. Пиру-ват-формиат-лиазная система также составляет часть системы, генерирующей АТР у анаэробных организмов [например, в смещанном кис-ютном брожении у энтеробактерий, в том числе у Е. соН (гл. 9, разд. Е, 2)]. Эти две реакции представляют пару важных процессов, обеспечивающих фосфорилирование на субстратном уровне. По этой причине на рис. 8-19 они выделены. Их следует сравнить с двумя ранее рассмотренными примерами фосфорилирования на субстратном уровне (рис. 8-4 и 8-3). [c.275]

    Электрон-транснортные процессы у анаэробных бактерий. В анаэробных условиях, т.е. в отсутствие кислорода, хемоорганотрофные организмы могут получать биохимическую энергию (в форме АТР) двумя способами-путем брожения и путем фосфорилирования, сопряженного с переносом электронов. В распоряжении организмов, осуществляющих брожение, имеется мало реакций, служащих для синтеза АТР. Это реакции фосфорилирования на уровне субстрата (разд. 7.21). [c.247]

    Брожение-это такой метаболический процесс, при котором регенерируется АТР, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода. Реакции, приводящие к фосфорилированию ADP, являются реакциями окисления. От окисленного углерода клетка избавляется, выделяя СО2- Отдельные этапы окисления представляют собой дегидрирование, при котором водород переносится на NAD. Акцепторами водорода, находящегося в составе NADHj, служат промежуточные продукты расщепления субстрата. При регенерации NAD последние восстанавливаются, а продукты восстановления выводятся из клетки. [c.263]

    Уже давно было обращено внимание на то, что in vitro. (лат. — в стекле) сахара обладают значительной стойкостью, тогда как в организмах — in vivo (лат. — в живом) чрезвычайно быстро идут как процессы расщепления моносахаридов (брожение, окисление), так и синтетические процессы (например, образование крахмала, гликогена). Когда Э. Фишер получил т-метилглюкозид и оказалось, что он гидролизуется разбавленными кислотами почти в 100 раз быстрее, чем обычные а- и р-глюкозиды, возникла идея, что в организмах глюкоза при нормальных условиях переходит в особую активную форму. Такую неизвестную активную форму стали называть Y-сахаром, не связывая сначала с этим названием какого-либо представления о структуре. В дальнейшем, когда у т-глюкозидов было доказано наличие пятичленного кольца, т-сахарами стали называть фуранозы. Однако впоследствии оказалось, что наибольшей реакционной способностью обладают не фуранозы, а оксоформы. Кроме того, было обнаружено, что при углеводном обмене в организ.мах простые сахара, прежде чем расщепиться, как правило, превращаются в фосфорнокислые эфиры (стр. 570—572). Повидимому, активирование сахаров и заключается в их фосфорилировании, способствующем дециклизации молекул моносахарида. [c.549]


Смотреть страницы где упоминается термин Фосфорилирование в процессе брожения: [c.122]    [c.346]    [c.341]    [c.209]    [c.122]    [c.90]    [c.84]    [c.305]    [c.317]    [c.463]    [c.220]    [c.624]    [c.521]   
Основы технологии органических веществ (1959) -- [ c.379 ]

Основы технологии органических веществ (1959) -- [ c.379 ]




ПОИСК





Смотрите так же термины и статьи:

Брожение

Брожения брожение

Фосфорилирование



© 2025 chem21.info Реклама на сайте