Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эукариоты синтез белка

    У эукариот синтез белка протекает в основном так же, как и у прокариот, хотя и имеются некоторые различия. Например, у эукариот рибосомы имеют больший размер, у них больший ассортимент белков и белковых факторов [c.467]

    Возможно существование каких-то регуляторных белков или малых рибонуклеопротеидов, которые взаимодействуют с транслирующей рибосомой и избирательно останавливают или затрудняют элонгацию в определенных местах. Известен пример таких специфичных репрессоров элонгации в эукариотах это рибонуклеопротеид-ная частица, содержащая 7S РНК частица узнает особую N-концевую гидрофобную последовательность образующегося полипептида на транслирующей рибосоме, присоединяется к рибосомам и останавливает элонгацию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума (см. В.IX.2). Не исключено, что подобные механизмы используются для регуляции скорости элонгации на других стадиях синтеза белка, например, на определенных стадиях сворачивания белка или сборки белка на транслирующей рибосоме. [c.213]


Таблица 14.1. Состав белоксинтезирующей системы у про- и эукариот в разные стадии синтеза белка Таблица 14.1. Состав <a href="/info/188102">белоксинтезирующей системы</a> у про- и эукариот в <a href="/info/1357854">разные стадии</a> синтеза белка
    Строение и свойства других важнейших биополимеров — нуклеиновых кислот—существенно отличны от строения и свойств белков. Это различие выражает принципиальную разницу биологических функций. Можно сказать, что функция белков— исполнительная, в то время как функция нуклеиновых кислот— законодательная, поскольку она сводится к участию в синтезе белка. В конечном счете главный молекулярный процесс, лежащий в основе всей биологии, — матричный синтез биополимеров, реализуемый в транскрипции и трансляции (а также в обратной транскрипции). Физические основы этих явлений описаны в книге. Однако мы ограничились рассмотрением простейших модельных процессов, реализуемых в бесклеточных системах, и не затрагивали процессы регуляции матричного синтеза, т. е. регуляции действия генов. Очевидно, что клеточная дифференцировка, морфогенез и онтогенез в целом не могли бы реализоваться без такой регуляции. В самом деле, в любой соматической клетке многоклеточного организма наличествует тот же геном, что и в исходной зиготе, но функции соматических клеток различны, так как в них синтезируются разные белки. Регуляция действия генов осуществляется на молекулярном уровне в системе оперона у прокариотов или транскриптона у эукариотов. Рассмотрение этих систем выходит за рамки книги. [c.610]

    Регуляция синтеза белка у эукариот. Это более сложный процесс, так как транскрипция и трансляция происходят в разных компартментах и обеспечиваются большим количеством соответствующих структур. [c.473]

    Различия между рибосомами бактерий (70S) и эукариот (80S) имеют решающее значение для борьбы с инфекционными болезнями некоторые антибиотики частично или полностью подавляют синтез белка, протекающий на рибосомах 70S, но не затрагивают функции рибосом 80S [64]. [c.22]

    Мысль о том, что какой-то вид РНК несет генетическую информацию для биосинтеза белка, была первоначально высказана на основании того, что у эукариот почти вся ДНК сосредоточена в ядре, в то время как синтез белка протекает главным образом в цитоплазме на рибосомах. Следовательно, какая-то макромолекула, отличная от ДНК, должна переносить генетическую информацию от ядра к рибосомам. Логическим кандидатом на эту роль была РНК, поскольку ее обнаружили и в ядре, и в цитоплазме. Было также отмечено, что начало синтеза белка в клетке сопровождается увеличением содержания РНК в цитоплазме и увеличением скорости ее обновления. Эти и другие наблюдения привели Френсиса Крика к предположению (ставшему частью центральной догмы молекулярной генетики), что РНК вьшолняет функцию переноса генетической информации от ДНК к рибосомам, где происходит биосинтез белка. Позже, в 1961 г., Франсуа Жакоб и Жак Моно предложили название матричная РНК для той части клеточной РНК, которая переносит генетическую информацию от ДНК к рибосомам, т. е. к месту, где эти молекулы-переносчики служат матрицами для биосинтеза полипептидных цепей с определенной последовательностью аминокислот. [c.910]


    Регуляция синтеза белков в клетках эукариот намного сложнее не характерна прямая субстратная регуляция, так как опероны (транскриптоны) имеют обширные регуляторные зоны структурные гены разбросаны по геному в ядрах дифференцированных клеток эукариот большинство генов находится в репрессированном состоянии все структурные гены делят у эукариот на три группы — гены, функционирующие во всех клетках организма, в тканях одного типа, в специализированных клетках одного типа пространственное разделение процессов — транскрипция в ядре, трансляция в рибосомах. [c.319]

    Регуляция действия генов. Индукция и репрессия синтеза белков в организме человека. Роль гормонов в регуляции действия генов. Лекарственные препараты — ингибиторы матричных синтезов у прокариот и эукариот. [c.328]

    Г. эукариот принципиально отличаются от бактериальных. Внутри них последовательности нуклеотидов ДНК, несущие информацию для синтеза белка, не непрерывны, а разделены в одном или неск. местах участками, не кодирующими последовательность аминокислот. Такой прерывистый Г. транскрибируется весь подряд, а из образовавшейся РНК удаляются некодирующие участки. Области, соответствующие кодирующей части Г., сшиваются с образованием мРНК (т. наз. сплайсинг). [c.517]

    Один из возможных способов увеличения фотосинтеза и, следовательно, продуктивности растений состоит в клонировании хлоро-пластных генов в клетках бактерий и их переносе в растения. Известно, что хлоропласты и прокариотические клетки сходны по ряду признаков. На основании этого возникла симбиотическая гипотеза происхождения хлоропластов, впервые выдвинутая А. С. Фамин-циньпл (1886). Согласно этой гипотезе, клетки прокариот и хлоропласты сходны. В них присутствуют кольцевые ДНК, 708-рибо-сомы синтез белков начинается с одной и той же аминокислоты — N-формилметионина, а синтез белка подавляется хлорамфенико-лом, а не циклогексимидом, как у эукариот. Позже было показано, что ДНК-зависимая РНК-полимераза Е. соН связывается с определенными участками ДНК хлоропластов шпината. [c.150]

    Последовательности реакций, показанные в уравнениях (7-29) и (7-30), представляют собой общий механизм, используемый клетками для присоединения карбоновых кислот к—ОН",—SH-и—МНа-группам. Например, последовательность реакций (7-30) используется при образовании молекул аминоацил-тРНК, необходимых для синтеза белков. Механизм этих реакций показан в табл. 7-2. В зависимости от типа образующегося соединения (тиоэфир, сложный эфир или амид) реакции обозначены как S1A, S1B или SI . Символы а и y указывают, в каком месте происходит расщепление АТР при Р или при Pv Например, образование ацетил-СоА у эукариотов протекает по механизму SlA(a). Понятно, что эта последовательность включает гидролиз неорганического пирофосфата (Pi i) до неорганического фосфата (Pi), роль которого в сопряжении реакции расщепления АТР с биосинтезом рассмотрена ниже (гл. 11, разд. Б,2). [c.135]

    Аналогичные белковые факторы инициации обнаружены также в эукариотических клетках. Открыто около 10 эукариотических белковых факторов инициации (см. табл. 14.1), их принято обозначать elF. Все они, по-видимому, важны для инициации, однако только три из них абсолютно необходимы и существенны для белкового синтеза eIF-2, eIF-3 и eIF-5. Они получены в чистом виде eIF-2 состоит из а-, 3- и у-субъединиц (мол. масса 38000, 47000 и 50000 соответственно), eIF-3 (мол. масса 500000—700000) и eIF-5 (мол. масса 125000). Укажем также, что в синтезе белка их роль тождественна роли инициаторных белков у прокариот. Отличительной особенностью синтеза белка у эукариот является, кроме того, наличие среди 10 белковых факторов инициации еще одного белка, названного кэп-связы-вающим. Соединяясь с 5 -участком кэп мРНК, этот белок содействует образованию комплекса между мРНК и 40S рибосомной субчастицей. Необходимо отметить, что до сих пор не раскрыты тонкие молекулярные механизмы участия белковых факторов инициации как у про-, так и у эукариот в сложном процессе синтеза белка. [c.526]

    Пептидил-пуромицин не несет на себе триплета антикодона и поэтому тормозит элонгацию пептидной цепи, вызывая обрыв реакции, т.е. преждевременную терминацию синтеза белка. При помощи пуромицина было доказано, например, что гормональный эффект в ряде случаев зависит от синтеза белка de novo. Укажем также, что пуромицин оказывает тормозящее действие на синтез белка как у прокариот, так и у эукариот. [c.541]

    Весьма интересен молекулярный механизм действия дифтерийного токсина. Он оказался наделенным способностью катализировать реакцию АДФ-рибозилирования фактора элонгации эукариот (eEF-2), выключая тем самым его из участия в синтезе белка. Резистентность многих животных к дифтерийному токсину, вероятнее всего, обусловлена трудностью или полным отсутствием проникновения (транспорта) токсина через мембрану клеток. [c.542]

    Ферменты, катализирующие матричный синтез нуклеиновых кислот, называются ДНК- или РНК-полимеразами. В некоторых случаях цепь мРНК может служить матрицей не только для синтеза белка, но и для синтеза ДНК. Этот процесс катализируется ферментом обратной транскриптазой. Каждый из трех синтезов биополимеров включает в себя три этапа инициацию — начало образования полимера из двух мономеров, элонгацию — наращивание полимерной цепи и терминацию — прекращение матричного синтеза. Механизмы синтеза ДНК одинаковы для прокариот и для эукариот. В их основе заложены принципы комплементарности азотистьгх оснований (А=Т и Г=Ц), обеспечивающие строгое соответствие нуклеотидной последовательности родительской и дочерней цепей ДНК. [c.450]


    После образования нескольких пар оснований происходит отделение ст-субъединицы от транскрипционного комплекса, а кор-фермент продолжает процесс наращивания цепи РНК на матрице, которой является одна цепь ДНК. Открытый комплекс включает в себя всего 15—20 пар нуклеотидов, так как по мере движения фермента в направлении 5 3 водородные связи между нуклеотидами матрицы вновь восстанавливаются. У прокариот частично синтезированная мРНК уже взаимодействует с рибосомами и вовлекается в процесс синтеза белка. В клетках эукариот синтез РНК и белка разобщен, кроме того, новосинтезированные транскрипты подвергаются посттранскрипцион-ным модификациям. [c.459]

    Рибосомы. Рибосомы служат местом синтеза белка. На электронных микрофотографиях они видны как частицы, лежащие в цитоплазме. Рибосомы бактерий имеют размеры 16x18 нм. Примерно 80-85 % всей бактериальной РНК находится в рибосомах. Так как интактные рибосомы бактерий при ультрацентрифугировапии оседают со скоростью, составляющей около 70S, их называют 708-рибосомами. Цитоплазматические рибосомы эукариот, за немногими исключениями, несколько крупнее, и их называют 808-рибосомами. [c.22]

    Скорость синтеза белков у различных представителей надцарств прокариот и эукариот варьирует в широких пределах Это зависит от многих внутренних и внешних факторов Тем не менее, у бактерий при 37°С за 1 секунду может включаться в растущую полипептидную цепь от [c.173]

    Наиб, крупные достижения М. б. расшифровка структуры белков и нуклеиновых к-т (М. Перутц, Дж. Кевдрю, Дж. Уотсон, Ф. Крик, У. Гилберт) создание адапторной теории белкового синтеза (Ф. Крик) и теории регуляции синтеза белков в бактериях (Ф. Жакоб, Ж. Моно) открытие транспортной и матричной РНК, расшифровка генетич. кода (М. Ниренберг, G. Очоа) открытие обратной транскрипции (X. Темин, Д. Балтимор), прерывистой структуры генов и механизма созревания матричных РНК у эукариот развитие методов генной инженерии (П. Берг, [c.347]


Смотреть страницы где упоминается термин Эукариоты синтез белка: [c.218]    [c.347]    [c.223]    [c.237]    [c.297]    [c.494]    [c.490]    [c.513]    [c.531]    [c.47]    [c.48]    [c.48]    [c.48]    [c.229]    [c.230]    [c.231]    [c.232]    [c.95]    [c.13]    [c.465]    [c.422]    [c.733]    [c.180]    [c.947]    [c.956]    [c.109]    [c.206]    [c.176]    [c.194]   
Гены и геномы Т 2 (1998) -- [ c.145 , c.162 ]




ПОИСК







© 2024 chem21.info Реклама на сайте