Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы с другими химическими стадиями

    Алкилирование изобутана низшими олефинами в присутотвии серной кислоты включает значительно больше химических стадий, чем это обычно считали в прошлом. Олефины вступают в реакции в основном на начальных стадиях, а изобутан — на заключительных. Больиганство реакций протекает на границе раздела фаз, однако те реакции, ъ результате которых образуются тяжелые фракции и растворимые в кислоте углеводороды, могут протекать в кислотной фазе. Алкилсульфаты и раотворенные в кислоте углеводороды играют ключевую роль в химизме всего процесса. Хотя в статье были приведены экспериментальные данные по алкилированию изобутана в присутствии серной кислоты и с иопользо-ванием олефинов С4, предложенный механизм можно распространить на фтористоводородную и другие кислоты, а также на другие Олефины. [c.130]


    Процесс принимает периодический характер, и концентрация колеблется вокруг критического значения. Если энергия активации у процесса II больше, чем у I, то критическая концентрация (У) уменьшается с температурой. Это значит, что при повышении температуры глубина процесса холоднопламенного окисления уменьшается, холодное пламя вырождается. Иногда это явление называют верхней границей области холоднопламенного окисления по температуре, но, как было отмечено уже в [49], оно не должно иметь характер критического условия. Рассмотренные кинетические закономерности определяют характер явлений самовоспламенения углеводородов. Для протекания реакций в горячем пламени существенны совсем другие химические стадии процесса. [c.283]

    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]

    Эти данные подтверждаются и другими исследователями [2]. Возникает, однако, вопрос, вызвана ли эта аномалия только ростом диффузионного сопротивления или она связана и с торможением собственно кристаллохимического акта. Для решения этого вопроса исследовались начальные стадии восстановления при низких давлениях, когда коэффициент диффузии газов велик и скорость процесса лимитируется химической стадией. Чуфаровым, например, было установлено [14], что и в этом случае скорость процесса увеличивается с повышением температуры до 500° С, а [c.53]


    Следовательно, анализ зависимости концентрации НВЧ от концентрации одноименных устойчивых ионов высшей валентности позволяет различать первый и второй случай, т. е. устанавливать лимитирующую стадию . Как будет показано в разделе 4, из этого анализа вытекают также некоторые критерии, позволяющие отличать рассмотренный стадийный механизм (последовательные электрохимические стадии (Л) и ( )) от ряда других механизмов. В частности, независимость концентрации НВЧ от концентрации ионов при заданном потенциале (при достаточном удалении от равновесия) представляет собой важный признак указанного стадийного механизма с лимитирующей стадией Б). Действительно, нетрудно убедиться, что при наличии в суммарном процессе быстрых химических стадий, в которых участвуют ионы М+ и М + (например, стадии диспропорционирования ионов М+), пропорциональность между [М+] и [М,2+] должна соблюдаться не [c.80]

    Процессы с другими химическими стадиями [c.59]

    Значительный интерес представляют и ряд других химических стадий электрохимических процессов, протекающих как на поверхности электро-доп, так и в объеме раствора. [c.22]

    Если хотя бы одна из этих химических стадий протекает значительно медленнее, чем другие стадии электрохимического процесса — транспортировка, перенос заряда, образование новой фазы, то все отклонение потенциала под током от равновесного значения будет обусловлено замедленностью этой стадии, т. е. будет отвечать реакционному перенапряжению т)р  [c.322]

    Под общим понятием механизма реакции в настоящее время подразумевают процессы столкновения реагирующих частиц, перераспределения электронной плотности в них и другие элементарные стадии с учетом в каждом отдельном акте возможно более точной стерео-химической картины перехода от реагентов к продуктам [c.9]

    Таким образом, на первой, физической , стадии радиационного процесса происходит перераспределение поглощенной энергии первичного излучения между большим числом вторичных заряженных частиц, которые взаимодействуют с электронами атомов и приводят к возбуждению и ионизации молекул вещества. Затем наступает вторая - физико-химическая—стадия процесса. Образовавшиеся под действием излучения осколки молекул (ионы, атомы, радикалы) имеют большую химическую активность и реагируют как между собой, так и с другими молекулами с большой скоростью. Результатом этих вторичных реакций является образование новых активных частиц (свободных радикалов, вторичных ионов), причем в системе достигается тепловое равновесие. [c.108]

    Особенности процесса определяют конструкцию реактора и его размеры. В одних случаях определяющими являются физические стадии процесса (тепло- и массообмен), в других — кинетика химической стадии. [c.270]

    В периодическом (прерывном) процессе стадии смешивания реагирующих веществ, химического взаимодействия и выделения продуктов реакции, составляющие цикл, следуют друг за другом и периодически повторяются через определенные промежутки времени. В каждом цикле условия протекания реакции непрерывно изменяются, так как с течением времени концентрация исходных веществ уменьшается, что ведет к снижению скорости реакции, изменению температуры и т. д. Вследствие этого периодические процессы менее производительны. Их используют в производстве стали, кокса, многих органических красителей, взрывчатых веществ, соляной кислоты и других химических продуктов. [c.166]

    Аналогичное уравнение можно написать для скорости отдельной стадии химического процесса, поскольку каждая стадия описывается вполне определенным стехиометрическим уравнением. В этом случае под изменением количества вещества следует понимать изменение его именно в результате рассматриваемой стадии процесса и не учитывать изменения количества вещества, которые, возможно, происходят в результате одновременно протекающих других стадий. [c.42]

    Тогда, когда взаимодействие активированных частиц, образовавшихся в первичных процессах, с другими частицами системы приводит к химическим превращениям, говорят о вступлении фотохимического процесса в следующую стадию — стадию вторичных процессов. Для их протекания не требуется освещения, поэтому их еще называют темповыми процессами. [c.187]

    В последнем разделе обсуждаются особенности других возможных стадий электродных процессов — химических и образования новой фазы, а также многостадийные и параллельные процессы и роль явлений пассивности и адсорбции органических соединений в электрохимической кинетике. В этом разделе отражены только самые основные особенности кинетики сложных процессов и приведено ограниченное число примеров практически важных электрохимических реакций. [c.3]


    При сравнении схем (I) и (И) видно, что закономерности катодного процесса при медленной предшествующей химической стадии должны быть полностью аналогичными закономерностям анодного процесса для медленной последующей химической реакции. С другой стороны, закономерности анодного процесса схемы (I) должны быть идентичными закономерностям катодного процесса (П). [c.299]

    В отличие от обычной гомогенной химической реакции, протекающей во всех точках объема раствора, где есть реагирующие вещества, электрохимическая реакция идет на границе раздела между электродом и раствором, т. е. является реакцией гетерогенной. Отсюда следует, что любой электродный процесс всегда имеет ряд последовательных стадий сначала реагирующее вещество должно подойти к электроду, затем должна произойти собственно электрохимическая стадия, связанная с переносом электронов или ионов через границу раздела фаз (стадия разряда — ионизации), и, наконец, образовавшиеся продукты реакции должны отойти от поверхности электрода, чтобы освободить место для новых порций реагирующего вещества. Первая и третья стадии имеют одинаковые закономерности и называются стадиями массопереноса. Стадии массопереноса и разряда—ионизации присутствуют во всех без исключения электродных процессах. Помимо этих стадий при протекании электродных реакций встречаются также и другие. Так, часто электродные процессы осложняются химическими реакциями в объеме раствора или на поверхности электрода, в которых может участвовать исходное вещество или продукт электрохимической реакции  [c.170]

    Работы по созданию топливных элементов дали толчок развитию двух теоретических направлений современной электрохимии теории пористых электродов и электрокатализу. Пористый электрод представляет собой совокупность контактирующих друг с другом твердых частиц с электронной проводимостью и пустот между частицами (пор). Применение пористых электродов позволяет сосредоточить в небольшом объеме сравнительно большую поверхность для протекания электродных реакций. При подаче газообразных окислителя или восстановителя электрохимические процессы протекают на таких участках пористых электродов, которые доступны как для реагирующего вещества, так и для раствора. Эффективность работы газового пористого электрода зависит, таким образом, от распределения электролита и газа в порах. Теория пористого электрода описывает кинетику процессов в пористых средах с учетом транспортных и непосредственно электрохимических или химических стадий для выбора оптимальной структуры электрода. [c.220]

    Характерной особенностью большинства многостадийных процессов в электрохимии органических соединений является сочетание электрохимических и химических стадий реакции, осуществляющихся последовательно или параллельно друг другу. Ниже на примере процессов катодного восстановления органических веществ, включающих химические стадии протонирования и димеризации, а также процессов каталитического выделения водорода и электровосстановления нитросоединений мы рассмотрим различные аспекты влияния химических стадий процесса на его кинетику, механизм и селективность, природу промежуточных продуктов и их устойчивость. [c.230]

    Химическая кинетика стремится раскрыть механизм химического процесса, т. е. выяснить, из каких простых химических реакций состоит сложный химический процесс, как эти стадии связаны друг с другом, какие промежуточные продукты принимают [c.6]

    Химическая кинетика стремится раскрыть механизм химического процесса, т. е. выяснить, из каких простых химических реакций состоит сложный химический процесс, как эти стадии связаны друг с другом, какие промежуточные продукты принимают участие в совокупном химическом процессе. Важную роль в механизме многих сложных химических реакций играют лабильные короткоживущие промежуточные продукты, такие, как атомы, свободные радикалы, ионы, лабильные комплексы и т. д. Кинетика, занимающаяся изучением химических реакций, по существу есть химия лабильных промежуточных частиц. В результате исследования составляют схему механизма химического процесса, включающую предполагаемые стадии и промежуточные продукты. Эту схему сопоставляют со всеми имеющимися фактами, проверяют, дополняют, изменяют с появлением новых данных и по мере увеличения экспериментальных доказательств из гипотетической превращают в обоснованную схему (модель) реального химического процесса. Важную информацию при исследовании дают разнообразные приемы воздействия на систему и математический анализ схемы при ее сопоставлении с экспериментальными данными. [c.9]

    В других случаях наиболее медленной стадией процесса служит химическое взаимодействие на поверхности раздела. В таких случаях говорят, что процесс лежит в кинетической области. [c.281]

    Химический процесс — это смена закономерно следующих друг за другом стадий развития и протекания химической реакции во времени, когда исходные вещества (реагенты) превращаются в другие химические соединения. Реагенты и продукты реакции называют компонентами химического процесса. Механизм химического превращения характеризует совокупность промежуточных форм (состояний), стадий, из которых складывается химическая реакция. Первостепенной задачей современной химической кинетики является исследование элементарных стадий, определяющих механизм сложных химических реакций, с которыми обычно приходится иметь дело в технологической практике. В подобных реакциях, как правило, химический процесс протекает в несколько стадий. Реакции, состоящие из одной стадии, осуществляющиеся путем прямого превращения реагирующих частиц в продукты реакции, называются элементарными реакциями. Они складываются из большого числа одинаковых элементарных актов химического превращения. Здесь могут участвовать в роли частиц не только стабильные молекулы, но и лабильные промежуточные частицы — свободные радикалы, ионы, комплексы. Поэтому элементарные акты химического превращения могут быть весьма разнообразны. [c.166]

    Большинство соударений молекул не приводит к химическому взаимодействию между ними столкнувшись, они разлетаются в разные стороны, как упругие шары. Для осуществления элементарного акта реакции необходимо, чтобы электронные оболочки атомов реагентов, преодолевая взаимное отталкивание, вторглись одна в другую, что вызовет разрыв старых связей и возникновение новых, т. е. химическое превращение вещества. На это нужно затратить энергию. Поэтому лишь молекулы, обладающие избытком энергии по сравнению со средним запасом энергии всех молекул, могут преодолеть такой энергетический барьер, чтобы войти в химический контакт друг с другом. Но если процесс идет через стадию активированного комплекса, образование которого не требует немедленного перераспределения химических связей между атомами реагентов, то избыточный запас энергии у молекул реагентов, делающий их столкновение эффективным, может быть меньше. Поэтому протекание химических реакций через стадию образования активированного комплекса энергетически является более [c.134]

    Большинство соударений молекул не приводит к химическому взаимодействию между ними столкнувшись, они разлетаются в разные стороны, как упругие шары. Для осуществления элементарного акта реакции необходимо, чтобы электронные оболочки атомов реагентов, преодолевая взаимное отталкивание, вторглись одна в другую, что вызовет разрыв старых связей и возникновение новых, т. е, химическое превращение вещества. На это нужно затратить энергию. Поэтому лишь молекулы, обладающие избытком энергии по сравнению со средним запасом энергии всех молекул, могут преодолеть такой энергетический барьер, чтобы войти в химический контакт друг с другом. Но если процесс идет через стадию активированного комплекса, образование которого [c.177]

    Методы теоретического расчета скоростей реакций на основе свойств перерабатываемых систем пока отсутствуют. Системы, подвергающиеся обработке при высоких температурах в промышленных аппаратах, не являются термодинамически изолированными. Химические и другие превращения обычно идут в них с большими скоростями в условиях далеких от равновесия и, кроме того, в условиях неизотермичности и гидродинамической нестационарности. Поэтому теоретическое выявление и обобщение кинетических закономерностей представляет пока неразрешенную задачу. Движущие силы и коэффициенты скоростей процесса или его стадий применительно к выбранному на основе общих соображений кинетическому уравнению приходится определять экспериментально, преодолевая трудности достаточно корректного их моделирования. В отличие от промышленных установок, работающих в непрерывных стационарных режимах, в моделях процесс чаще всего осуществляется в периодическом режиме. Кроме того, закономерности, которым подчи- [c.347]

    Здесь Л и — величины, которые для разных процессов имеют различную физическую основу. Так, для процессов, лимитируемых химической реакцией, А — вероятностный фактор, а Е — кажущаяся энергия активации ( кажущаяся — поскольку процесс гетерогенный). Для процессов, лимитируемых диффузией, А зависит от расстояний между структурными элементами кристаллической решетки и от частоты их колебаний, а — от сил связи между ними. Для других лимитирующих стадий (возгонка, рекристаллизация и проч.) Л и зависят и от других факторов. [c.349]

    Конуэй [19а] на примере реакции окисления аммиака, изученной Осуином и Саломоном [19г], также иллюстрирует важное значение стехиометрического числа для схемы последовательных реакций. Эту же реакцию окисления аммиака рассматривает Деспик [19д] с той целью, чтобы показать (развивая далее аргументацию Милнера), насколько сложным может оказаться логическое развитие способов трактовки результатов на основе стехиометрического числа и что выводы относительно вероятных схем последовательных ступенчатых реакций, сделанные при отсутствии других данных только на основе стехиометрических чисел, могут быть ошибочными. Обработка результатов становится особенно сложной в том случае, когда протекающий ток является результатом параллельных стадий переноса заряда, одна из которых (или какая-то другая химическая стадия) является лимитирующей, но все эти стадии необходимы для полного протекания процесса (ср. случай окисления ЫНз или ЫгН4). [c.286]

    Мембраны из поликомпонентных сплавов на основе палладия, серебра и никеля допускают эксплуатацию при температурах до 600 °С, при этом необходима предварительная очистка разделяемой газовой смеси от серосодержащих соединений, окиси углерода, галогеивдов и других примесей, которые способны образовывать с металлами устойчивые химические соединения (гидриды, карбиды, нитриды, оксиды), снижающие скорость диффузии. Следует помнить, что при более низких температурах, помимо снижения коэффициента диффузии, падает скорость диссоциации газа и химическая стадия процесса проницания становится лимитирующей. [c.119]

    Сложные гетероциклические соединения, многообразные формы веществ со смешанными функциями являются первичной формой превращения погребенного органического вещества. Часть смолистых веществ нефти является примером подобного рода соединений. Они, с одной стороны, превращаются в более простые углеводородные, сперва также очень сложные соединения, с другой — переходят в результате диспропорционирования водорода в еще более сложные нолициклические соединения, являющиеся, так сказать, отходами нефтеобразовательного процесса. С химической точки зрения одинаково невозможно представить себе ни прямое превращение погребенного органического вещества в углеводороды, ни образование при этом метановых углеводородов. Последние знаменуют собой не начальные, а конечные стадии превращения, предшествующие окончательной гибели нефти и преврахцению ее в метан и графит. Иной порядок превращения исходного материала в нефть, т. е. переход от простейших метановых углеводородов в сложные нолициклические системы химически невозможен в условиях нефтеобразовательного процесса. < [c.203]

    При каталитическом крекинге, по С. Н. Обрядчикову, сперва происходит адсорбция веществ с наибольшей физико-химической силой притяжения (смолы, олефины, высокомолекулярные полициклы и т. д.), которые полностью закрывают поверхность катализатора. В начале процесса могут быть стадии десорбции и вытеснения легких молекул более тяжелыми, особенно содержащими непредельные связи. Парафины не адсорбируются. Далее, в результате крекинга и перераспределения водорода, часть углеводородных молекул, становясь все более и более непредельными, уже не могут вытесняться другими молекулами, поэтому десорбция прекращается. В результате дальнейшей отдачи водорода адсорбированные молекулы образуют на катализаторе кокс. [c.320]

    Явление химической нндукцни возможно только в случае, если обе сопряженные реакции являются сложными, т. е. состоят из нескольких элементарных стадий. Элементарная реакция не может быть индуцирована другой реакцией. Это вытекает из положения о независимом протекании элементарных реакций, согласно которому константа скорости элементарной реакции не зависит от того, протекают ли од Ювременно в той же системе другие химические процессы. [c.246]

    Искусственные карбонаты, к которым относятся ЫагСОз (сода), NaH 03 (питьевая со да) и К2СО3 (поташ), вырабатываются химической промышленностью в больших количествах, так как они потребляются стекольным, лакокрасочным, целлюлозно-бумажным, текстильным, кожевенным и многими другими производствами. Основным промышленным способом получения соды является аммиачный, заключающийся в последовательном насыщении крепкого раствора поваренной соли аммиаком и углекислым газом. Процесс идет по стадиям  [c.280]

    Реакционные смеси твердых веществ обычно имеют небольшую теплоемкость и теплопроводность, и это может привести к значительным локальным разогревай, особенно если реакция экзотермическая. Сильное изменение температуры реакционной смеси может вызвать замену одной лимитирующей стадии процесса (например, диффузионной) другой (например, кинетической). Это повлияет не только на абсолютную величину скорости процесса, но и на его кинетическую характеристику. На рис. 16.4 показаны характерные кривые зависимости коэффициента скорости процесса от температуры. Когда процесс лимитируется химической кинетикой — коэффициент скорости реакции К пропорционален ехр [— /(/ Т) ],—типична кривая 1, для диффузионной кинетики (/С Г) — кривая 2. Кривая 3 характерна для более сложного случая, когда с изменением температуры процесс г остепенно переходит из кинетической области в диффузионную кривая 4 — для резкого перехода процесса из диффузионной области в кинетическую. Последний случай может наблюдаться, например, когда повышение температуры приводит к появлению жидкой фазы, что вызовет резкое уменьшение диффузионного сопротивления. [c.350]

    На этой, дозвезднои, стадии развития материи ядра других химических элементов не образуются, так как плотность и температура расширяющейся Вселенной быстро падают (процесс образования Не, начавшись приблизительно через 2 мин, прекращается к коццу четвертой минуты). При дальнейшем остывании Вселенной через 1 млн лет, когда температура достигает 3500 К, происходит рекомбинация ядер гелия и оставшихся ядер водорода с электронами— образуются атомы гелия и водорода — исходный материал для межзвездного газа и звездных систем. [c.8]


Смотреть страницы где упоминается термин Процессы с другими химическими стадиями: [c.321]    [c.477]    [c.88]    [c.58]    [c.146]    [c.155]    [c.146]    [c.202]    [c.295]   
Смотреть главы в:

Полярография в органической химии -> Процессы с другими химическими стадиями




ПОИСК





Смотрите так же термины и статьи:

Другие процессы



© 2025 chem21.info Реклама на сайте