Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический (элементный) состав топлив

    Многообразие встречающихся в природе твердых горючих ископаемых обусловливает необходимость их систематизации, при которой они классифицируются по наиболее общим и характерным признакам. Одна из задач химии твердых топлив состоит в создании всеобъемлющей классификации. Требования, предъявляемые к современной классификации топлив, очень велики и разнообразны. Классификация должна быть основана на наиболее характерных признаках топлива, которые позволили бы потребителю без всяких затруднений выбрать наиболее подходящее по свойствам топливо. Обычно выбирают комплекс физико-химических характеристик (происхождение, физические свойства, технический и элементный состав, результаты обработки химическими реактивами и растворителями, отношение к термической переработке и др.). [c.53]


    Качественная и количественная характеристика твердого топлива. Качество твердых топлив характеризуют их физико-химические и механические свойства влажность, зольность, элементный состав горючей массы, выход летучих веществ и смолы, характеристика кокса (остатка), состав золы, ее плавкость, теплота сгорания топлива, его реакционная способность, класс крупности, плотность, теплоемкость, теплопроводность, механическая прочность, термостойкость, способность к размолу и удельный расход энергии на размол, пожаро- и взрывоопасные свойства. В табл. 11,32 и 11,33 приведены характеристики твердого топлива. [c.170]

    Расчеты для газового топлнва. В отличие от твердого и жидкого топлива, состав горючего газа обычно бывает известен в процентах по объему, а не по массе, причем этот состав задается указанием концентрации компонентов (индивидуальных газов), а не химических элементов. В общем случае для определения расхода воздуха и выхода продуктов сгорания при сжигании газового топлива необходимо сначала рассчитать элементный массовый состав последнего в процентах, а затем воспользоваться выражениями (8.8) и (8.14)— (8.19). Для газовых топлив, содержащих только такие горючие компоненты, как углеводороды, водород и монооксид углерода, можно упростить расчеты, прибегнув к приводимым ниже формулам, основанным на стехиометрических соотношениях объемов горючих газов и продуктов их сгорания (химические символы в квадратных скобках означают объемное содержание в топливе соответствующих компонентов, %)  [c.182]

    К физико-химическим от носятся свойства, характеризующие состояние ТСМ и их состав (плотност ь, вязкость, теплоемкость, элементный, фракционный и групповой углеводородный составы и т.д.). Эти методы позволяют косвенно судить о том или ином эксплуатационном свойстве. Например, по фракционному составу судят о пусковых свойствах бензинов, по плотности реактивного топлива — о дальности полета и т.д. [c.98]

    В последние годы проявляется большой интерес к сераорганическим соединениям, содержащимся в высококипящих дистиллятах. Уже при исследовании их углеводородной части отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетероорганическим соединениям. Дистилляты, выкипающие выше 300° С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов 24]. В связи с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах знание природы и распределения основных функциональных групп ОСС приобретает в настоящее время все больший научный и практический интерес. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структуре молекул, позволяют изучать состав наиболее тяжелых фракций нефти. Оказалось, что для исследования сераорганических соединений высококипящих дистиллятов нефти неприменимо большинство традиционных методов, успешно используемых при изучении состава сераорганических соединений средних нефтяных дистиллятов. [c.11]


    Состав нефтяных топлив в значительной мере определяет их эксплуатационные свойства. Топлива характеризуются фракционным, компонентным, групповым химическим (углеводородным и неуглеводородным), индивидуальным и химическим (элементным) составом. [c.100]

    При производстве ВУТ исходная вода с ассоциированной структурой также претерпевает превращения, в результате чего образуется химически активная дисперсионная среда топлива, насыщенная компонентами катионного и анионного вида. Элементный состав топлива ВУТ включает как органические, так и неорганические (минеральные) элементы, каждый из которых играет определенную роль в формировании его физико-механических и теплотехнических свойств. [c.68]

    Углеводороды — наиболее простой по элементному составу класс органических соединений (состоят только из углерода и водорода). Они широко распространены на Земле входят в состав природного газа, нефти и некоторых твердых горючих ископаемых (горный воск). Предельные углеводороды являются продуктами многотоннажного промышленного органического синтеза они образуются при крекинге и при получении синтетического моторного топлива. Эти углеводороды широко используются как высококалорийное топливо ценное промышленное сырье для получения разнообразных химических продуктов. [c.23]

    В ходе многочисленных исследований было установлено, что каждому физико-химическому свойству соответствует несколько длин волн, на которых выполняются соотношения (4.2) - (4.4). Установлено, что каждому свойству соответствует длина волны, при котором эти соотношения выполняются с максимальной точностью. Такие длины волн называются аналитическими. В таблице 4.2 приведены аналитические длины волн для различных свойств и, соответствующие им, коэффициенты корреляции. Относительная ошибка определения свойств по уравнениям (4.4) - (4.5) не превышает 4%, а коэффициент корреляции - 0,85-0,99. Как видно из данных таблицы 4.2, принцип квазилинейной связи (ПКС) выполним даже в таких сложных веществах, как нефть, нефтепродукты, топлива, углеродистые вещества, полимерные смеси, асфаль-то-смолистые высокомолекулярные вещества и др. На основе ПКС предложены экспрессные методы, позволяющие определять по легкоопределяемой характеристике - коэффициенту поглощения, практически все трудноопредеяе-мые свойства молекулярных веществ и многокомпонентных смесей, например, молекулярную массу, вязкость, элементный состав, показатели термостойкости, температуру хрупкости, концентрацию парамагнитных центров, энергию активации вязкого течения, энергию когезии, температуру вспышки, вязкость, показатели реакционной способности и т.д. [14-30]. По сравнению с общепринятыми методами, время определения свойств сокращается от нескольких часов до 20-25 минут. Как свидетельствуют данные [14], для рассматриваемых свойств на аналитических длинах волн выполняется условие соответствия определения по общепринятым методам и расчетам по оптимальным параболическим и кубическим зависимостям. [c.90]

    Если известен элементный химический состав топлива, то его высшую теплоту сгорания легко подсчитать по формуле Д.И.Мендел еева  [c.164]

    При высоких температурах на металлических поверхностях, омываемых маслом, образуются отложения, напоминающие лак. Эти отложения имеют гладкую блестящую поверхность светложелтоватого, коричневого или черного цвета. Они представляют собой продукты глубокого окисления компонентов масла и имеют такой химический состав карбены и карбоиды 70—80%, асфальтены и гидроксикислоты до 10°/о, масло и нейтральные смолы 15—25% [96]. Лаковые отложения неоднородны и по элементному составу. В зависимости от качества масла и топлива, от температуры и других факторов состав лака может колебаться. В среднем в лаковых отложениях содержится 81—85% углерода, 7—9% водорода и 7—9% кислорода. Причина образования лаковых отложений при окислении масел на металлических поверхностях была установлена Н. И. Черножуковым Н С. Э. Крейном еще в 1932 г,. [80]. Было показано, что лакообразные вещества представляют собой продукты конденсации гидр-оксикислот. Позднее это было подтверждено при испытании на двигателях. [c.73]

    Полученные в результате крекинга продукт 1.1 — газ, катализат, кокс — исследовались в следующем порядке. Катализат подвергался фракциоиирои-ке и из него отбирались автобензин (фракция до 200 С ), дизельное топливо и остаток (фракция выше 350 °С). Газ фракционировался на аппарате Под-бильняка в жидких продуктах определялись уделЕ.ны вес, фракционный состав, йодное число, химический состав, а также содержание углерода и водорода элементным микроанализом, а в коксе — углерод и водород. О содержании водорода в продуктах крекинга судили и но данным элементного анализа. [c.278]


Смотреть страницы где упоминается термин Химический (элементный) состав топлив: [c.11]   
Смотреть главы в:

Химмотология топлив -> Химический (элементный) состав топлив




ПОИСК





Смотрите так же термины и статьи:

Элементный состав



© 2025 chem21.info Реклама на сайте