Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества углеродистые

    Авиационные топлива в процессе их хранения и транспортировки загрязняются механическими примесями, которые не могут быть обнаружены невооруженным глазом. Механические примеси в основном состоят из частиц окиси железа, песка, углеродистых и волокнистых веществ, размеры которых колеблются в широких пределах от 1—5 до 80—200 мк. Наибольшее количество частиц (50—55%) имеет размеры от 20 до 60 мк. Удаление механических примесей из топлива производится многократной фильтрацией его тонкими фильтрами. Топливо фильтруется также фильтрами самолета. Применяемые в настоящее время фильтры тонкой очистки (бумажные, металлические, сетчатые) удаляют из топлива все механические примеси размерами более 5 мк. [c.223]


    Образующиеся в условиях переработки сернистых нефтей при высоких температурах крекинг-процесса сернистые соединения, элементарная сера, меркаптаны и др. являются весьма коррозионно-активными веществами. Основным агентом высокотемпературной коррозии является сероводород. Сернистый газ при высоких температурах менее опасен, чем сероводород. Сухой сероводород при комнатной температуре также ие представляет опасности д, я обычных углеродистых сталей даже в присутствии кислорода, по ои способен взаимодействовать с медью согласно следующей реакции  [c.154]

    Во время работы двигателя масло, подвергаясь воздействию высоких температур и кислорода воздуха, претерпевает химические изменения и частично испаряется. На деталях, соприкасающихся с маслом, откладываются различные углеродистые вещества, а свойства самого масла меняются. [c.159]

    Моторная испаряемость вместе с рабочей фракцией и склонностью масла к образованию лака характеризуют термическую стабильность масла. Определение производится следующим образом металлический диск с четырьмя металлическими тарелочками или испарителями помещают в лакообразователь (см. рис. 85) и нагревают до заданной температуры. Затем в каждый испаритель наливают по 0,05 г испытуемого масла. Выдержав испарители с маслом в лакообразователе заданное время, их вынимают, дают остыть и взвешивают. Потеря в весе, происшедшая от испарения легких фракций масла, выраженная в процентах, является показателем моторной испаряемости масла. Из остатка извлекается жидкая часть, которая принимается за рабочую фракцию, а оставшиеся на испарителе твердые углеродистые вещества в виде тонкого черного покрытия — за лак. [c.163]

    При добавлении в топливо незначительного количества веществ, повышающих электропроводность (соли щелочных металлов и др.), скорость образования статического электричества резко падает, а Б некоторых случаях полностью устраняется. Вместе с тем добавление к топливу углеродистых веществ (асфальта, нефтяного битума) в незначительных количествах (0,005—0,0005%) повышает способность топлива образовывать статическое электричество во время перекачки. [c.231]

    Анализ отложений, обнаруженных в компрессорах других типов установок, показал, что помимо углеродистых веществ основным компонентом отложений является элементарная сера. Образование элементарной серы возможно за счет окисления сероводорода циркуляционного газа кислородом, растворенным в сырье или в МЭА. [c.140]


    Кромки подготовленных под сварку элементов аппаратов зачищаются до металлического блеска на ширину не менее 20 мм, а для электрошлаковой сварки — не менее 50 мм без следов ржавчины, масла и прочих загрязнений. Кромки листов из углеродистой стали очищают химическим способом. Непосредственно перед сваркой ржавые кромки смазывают 15%-ным водным раствором соляной кислоты. Раствор практически безопасен для работающих (при попадании на руки не вызывает ожогов). Если толщина слоя ржавчины не более 1 мм, раствор наносят один раз, если больше — 2—3 раза. Для интенсификации процесса перед повторным нанесением раствора желательно смоченную кромку протереть жесткой волосяной щеткой. Изделие с очищенными кромками сушат на воздухе, не промывая водой. Положительные стороны этого метода раствор реагирует только с ржавчиной и окалиной не выделяются вредные вещества, что позволяет очищать кромки непосредственно на рабочем месте конечный продукт реакции (хлорное железо) не влияет на качество сварного соединения. [c.74]

    Аппаратуру и коммуникации для отделений очистки газа, для хранения и транспортирования аммиака изготовляют из углеродистой стали (содержание углерода в пределах 0,2—2,3%) и чугуна (содержание углерода 2,5—5%). Из серого чугуна в основном делают арматуру, насосы, рамы под оборудование. Из углеродистой стали — трубы, фланцы, болты, гайки и аппаратуру, применяемую для производства аммиака, пара, химически очищенной воды и других веществ, не вызывающих коррозию. [c.93]

    В заводских условиях использование для активирования глин чистой или технической се])ной кислоты при наличии больших количеств водных растворов серной кпслоты, полученных при регенерации кислых гудронов от очистки бензинов, масел и т. д., нецелесообразно. В связи с этим возник вопрос о возможности применения для активирования глины так называемой отработанной кислоты, содержащей в своем составе некоторое количество углеродистых веществ, в том числе сульфокислоты и эфиры серной кислоты. [c.91]

    Выводы, сделанные на основе исследования плотности кокса этим методом, не противоречат основным результатам рентгеноструктурного анализа, а также данным, полученным новыми современными методами исследования тонкой структуры коксов. Это объясняется тем, что величина и характер пористости коксов из различных нефтепродуктов, так же как и величина плотности, тесно связаны с природой исходного сырья, механизмом процесса коксования и последующими изменениями структуры углеродистого вещества при тепловом воздействии на кокс. Уже исследования текстуры нефтяных коксов, выполненные нами, показывают, что пространственное распределение плотной массы и микропор (при увеличении в 60—200 раз) довольно четко отражает различия в природе исходного сырья для коксования. [c.231]

    Получение тепловой энергии от сжигания топлива. Основным источником тепловой энергии для печей является топливо. Топливом называется вещество, которое при нагревании в присутствии кислорода активно окисляется (сгорает) с выделением значительного количества тепла. Наибольшее значение для промышленных печей имеет углеродистое топливо. Углеродистое топливо бывает твердое, жидкое и газообразное. По происхождению топливо подразделяется на природное и искусственное. Основные разновидности топлива — уголь, нефть и природный газ. [c.13]

    В процессе исследований было установлено следующее. Органические вещества, оставшиеся в стоках после умягчения (до 20 мг/л), а также наличие меловой затравки практического влияния на скорость коррозии не оказывали. Углеродистая сталь, из которой были изготовлены корпуса выпарных аппаратов, из-за высокой скорости коррозии и ее неравномерного характера в паровой фазе и на границе раздела пар — раствор очень быстро подвергалась разрушению и потому не может быть использована как конструктивный материал. [c.115]

    Реакционная способность углеродистых материалов зависит прежде всего от их молекулярной и кристаллической структуры, а затем от степени их пористости и содержания минеральных веществ [1, 2, 106, 212, 266]. По современным научным воззрениям, процесс сгорания углеводородов, углеродистых материалов и даже алмаза проходит в две стадии вначале разрываются все атомные связи, а затем каждый атом сгорает в отдельности. Это означает, что чем меньше требуется энергии на разрыв межатомных связей в молекуле данного соединения, тем больше его реакционная способность. [c.219]

    Известно, что моторные масла при работе двигателя внутреннего сгорания подвергаются действию высоких температур и давления, контакту с кислородом воздуха и с различными металлами в результате углеводороды масла претерпевают процессы окисления, конденсации и разложения. При этом образуются углеродистые осадки, асфальто-смолистые вещества, карбены и карбоиды, кислоты и др. Оседая на деталях двигателя в виде нагара, лака и шлама, они приводят к изменению первоначальных качеств масла и ухудшают условия работы двигателя. Основное назначение моющих и диспергирующих присадок заключается в предотвращении отложения этих веществ, в обеспечении подвижности поршневых колец и нормальной работы двигателя. [c.93]


    При неполном сгорании топлива на деталях двигателя появляются твердые углеродистые отложения — нагар. Склонность топлива к нагарообразованию определяется нагарообразующей способностью составляющих его компонентов, в первую очередь она зависит от содержания ароматических углеводородов. В основном углеродистые вещества образуются в результате прогрессирующего крекинга углеводородов, однако в камере сгорания двигателя условия протекания химических реакций весьма разнообразны, поэтому, вероятно, что частицы углерода могут образовываться и другими путями. [c.264]

    Относительное расположение структурных элементов в кристаллите, размеры атомных сеток и боковых радикалов, количественное соотношение между атомами углерода той или иной валентной модификации определяются степенью уплотнения вещества углеродистого материала, которая в свою очередь изменяется в зависимости от условий термообработки его или степени метоморфизма [23, 25-27]. [c.7]

    Колонные аппараты (рис. 31) применяют в различных проазводствах химической и смежных с пей отраслей промышленности для проведения процессов тепломассообмена (ректификации, дистилляции, абсорбции и др.). В зависимости от параметров технологического процесса колонные аппараты изготавливают различных диаметров и высоты из материалов, устойчивых к воздействию обрабатываемых веществ (углеродистая, легированная и двухслойная стали, чугун, медь и другие материалы). Колонные аппараты работают под вакуумом, при атмосферном и повышенном давлении. [c.123]

    Обратимся еще к другим соединениям. Я выберу здесь, но преим5 Щест-ву, вещества углеродистые, так как все дело выражается в них проще, яснее и легче. Мы знаем, что для удовлетворения стремления к соединению, для насыщения, одного атома водорода нужно один атом хлора атомы хлора и водорода химически равнозначащи, эквивалентны. Эквивалент- [c.373]

    Из всего вышесказанного ясно, что принципы Коппа не выдержи-нают критики сравнивать объемы тел при f кипения нет никакой особенной выгоды кратности меж объемами при этой f почти не существует и закон равноостаточности верен лишь для частных случаев. Постараемся ж доказать, что и без этих нринцинов можно получить не только частные, но и общие выводы и притом и выводы важные и в практическом отношении. Сличение объемов мы будем производить при обыкновенной f, а где возможно сравнение при одинаковых f, то около 0 . В большинстве случаев последнее очень затруднительно, потому что определение удельных весов делается обыкновенно при разных f, а коэффициенты расширения тел мало известны, так что вводить поправку нри приведении уд. весов к t° О трудно и не всегда возможно. Небольшое количество наблюдений за последнее время относилось преимущественно к веществам углеродистым и так как с [c.253]

    Уже при слабом нагревании NjP(AG/ = + 104,1 кДж/моль) распадается, выделяя кислород. Поэтому в нем могут гореть углеродистые вещества, а его смеси с водородом и аммиаком взрывают. Оксонитрид а юта (V) растворяется в воде, но устойчивых соединений не образует. [c.356]

    Лак (la quer). Тонкий слой твердого или клейкого углеродистого вещества от коричневого до черного цвета, который образуется на умеренно нагретых поверхностях вследствие полимеризации тонкого слоя масла в присутствии кислорода. Лаком покрываются юбка и внутренняя поверхность поршня, шатуны и поршневые пальцы, стержни клапанов и нижние части цилиндров. Лак значительно ухудшает отвод тепла (особенно поршня), снижает прочность и сохраняемость масляной пленки на стенках цилиндров. [c.65]

    Смолистые вещества образуются в масле в результате его окислительных превращений (сшивания окисленных молекул) и полимеризации продуктов окисления и неполного сгорания топлива. Образование смол усиливается при работе недостаточно прогретого двигателя. Продукты неполного сгорания топлива прорываются в картер двигателя при продолжительной работе на холостом ходу или в режиме стоп-старт. При высокой температуре и интенсивной работе двигателя, топливо сгорает полнее. Для уменьшения смолообразования в моторные масла вводятся диспергирующие присадки, которые предотвращают коагуляцию и осаждение смол. Смолы, углеродистые частицы, водяной пар, тяжелые фракции топлива, кислоты и другие соединения конденсируются, коагулируют в более крупные частицы и образуют в масле шлам, тн. черный шлам, (bla k sludge). [c.65]

    На стадии регенерации из катализатора удаляются углеродистые вещества л, кроме того, катализатор, потерявший при частичной регенерации и осернении свою активность, особенно, при использовании в качестве исходного сырья лигроинов с высоким содергканием серы, подвергается окислению. Регенерация катализатора производится под давлением от 18 до 20 ати. Для предотвращения возможных нри этом взрывов установки оборудованы соответствующими нриснособленийми. [c.177]

    Сажа получается в результате элементарного распада простых молекул дезаггрегации в тазовой фазе. Углеродистое вещество имеет впд поронгковатой, не очень марающей сажи, не содерж1гг экстрактивных веществ и замечательно содержанием металлического железа, если пиролиз происходит в чугунных или Стальных ретортах. [c.394]

    После 1945 г. число работ по технологии, механизму и кинетике коксования и по свойствам нефтяноА кокса увеличилось [10, 24, 25, 85, 225 и др.]. Ряд статей был посвящен исследованию структуры углеродистых веществ (углей и коксов) методом рентгеноструктурного анализа, механизму графитации углеродистых веществ и в том числе нефтяного кокса [99—102]. [c.10]

    При переходе к тяжелому нефтяному сырью увеличивается доля коксовых отложений, образованных за Счет реакций конденсации термически нестабильных компонентов и исходных коксогенных соединений ( асфальтенов и смол). В литературе в основном приводятся результаты исследований, касающиеся образования и окисления углеродистых отложений на железоокисных катализаторах при переработке легкого углеводородного сырья, не содержащего гетеросоединений и асфальто-смолистых веществ. Тем не менее, общие закономерности образования и выгорания коксовых отложений, полученные для низкомолекулярного углеводородного сырья, могут быть использованы при исследовании же-лезоокисных катализаторов переработки тяжелого сернистого нефтяного сырья. [c.62]

    Меньшая масса полимерных веществ на нагароотбор-никах, изготовленных из нержавеющей стали, объясняется лучшей чистотой поверхности их по сравнению с чистотой поверхности полимероотборников, изготовленных из углеродистой стали. [c.200]

    Таким образом, благодаря хлорофиллу при действии солнечного света происходит передача растению солнечной энергии и накопление ее в растительном веществе. Сгорацие углеродистых соединений возвращает в виде тепла освобожденную солнечную энергию, которая и используется для приведения в действие машин, превращающих энергию тепловую в лшханическую. [c.22]

    Сульфонаты, получаемые из нефтепродуктов, подразделяют на водо-, водомасло- и маслорастворимые. Зодорастворимые сульфонаты имеют большое народнохозяйственное значение как сильные ПАВ их применение в качестве моющих средств позволяет экономить сотни тысяч тонн пищевых жиров и масел. ВоДомасло-растворнмые сульфонаты широко используют п эмульсий воды и масла ( растворимые масла ), М мые (или растворимые в углеводородах) сульфонаты при леняют в качестве моющих и диспергирующих присадок к моторным маслам. Эти сульфонаты не способствуют окислительным процессам, происходящим в масле, и вследствие высокой моющей способности предупреждают оседание смолистых и углеродистых веществ на деталях двигателей. Моющие присадки сульфонатного типа одновременно являются эффективными солюбилизирующими и нейтрализующими агентами. [c.67]

    Г-н Дальтон рассказал мне, что атомная теория созрела в его уме во время исследований, которые он проводил над маслородным газом [эты-леном, С2Н4] и углеродистым водородом метано.м, СН4] состав этих соединений в то время был еще не вполне ясен и окончательно установлен самим г-ном Дальтоном. Из его опытов следовало, что оба эти соединения состоят только из углерода и водорода. Кроме того, он нашел, что в расчете на одно и то же количество углерода углеродистый водород содержит точно вдвое большее количество водорода, чем маслородный газ. Это привело его к установлению численных отношений между составными частями двух указанных веществ и заставило рассматривать маслородный газ как соединение, образованное одним атомом углерода и одним атомом водорода, а углеродистый водород-как соединение, образованное од- [c.164]

    Конструкционный материал химического реактора в миого-продуктовых системах выбирают иа осиоис его коррозионных свойств, реакционных сред д, 1я всех процессов, которые предполагается осуществлять в реакторе. В качестве коиструкцпоп-ных материалов наиболее часто применяют углеродистую сталь нержавеющую сталь Х18Н10Т сталь с эмалевым кислотостойким покрытием сталь, футерованную керамической плиткой титан иногда пластические массы, кислого- и щелочестойкую керамику. В производствах продуктов, в которых лимитируется срдерн апие примесей и требуется высокая чистота продукта (высокочистые вещества, синтетические лекарственные средства), распространены также аппараты пз химически и термически стойкого стекла. [c.22]

    Harapo- и лакообразование вызывают пригорание и закоксовыва-ние поршневых колец, что приводит к прорыву газов в картер и падению мощности двигателя. Нагар, твердые углеродистые вещества образуются в высокотемпературной зоне (камере сгорания, канавках поршня, клапанах). Лак (прочная тонкая пленка) появляется на поверхности деталей в среднетемпературной зоне (юбке поршня, на внутренней поверхности поршня, стенках картера). Для предотвращения образования нагара и лака к маслам добавляют моющие и антиокислительные присадки, придающие маслам моющие и диспергирующие свойства. [c.20]

    Детальные исследования показали необходимость дифференци-ровать различные типы явлений, объединяемых общим понятием отравление . Прежде всего, целесообразно различать понятия отравления и блокировки. При отравлении наблюдается специфическое действие яда в отношении данного катализатора и данной реакции. Блокировка же представляет собой фактически механический процесс экранирования поверхности катализатора в результате отложения на ней примесей. Поэтому блокировка не специфична ни в отношении реакции, ни в отношении катализатора. Однако, естественно, блокировка резче сказывается на пористых катализаторах вследствие забивки устьев пор. Наиболее часто встречающимся видом блокировки катализаторов является отложение на их поверхности высокомолекулярных углеродистых соединений при проведении различного рода органических реакций, в частности крекинга. Такой процесс обычно называют зауглероживанием или закоксовы-ванием катализатора. При блокировке в первом приближении не меняются ни энергия активации катализатора, ни его избирательность (исключая процессы в диффузионной области), поскольку действие блокирующего вещества сводится к механическому выключению отдельных участков поверхности. Блокировка, как правило, является обратимым процессом, если при удалении блокирующего вещества не происходит разрушения или дезактивации катализатора. Так, углеродистые отложения удаляются простым выжиганием (при условии должной термоустойчивости катализатора). [c.52]

    Некоторые серусодержащие вещества вызывают значительную коррозию нефтепромыслового и нефтезаводского оборудования. Связанные с такой коррозией расходы нефтепереработчиков США в 1952 г. составляли в среднем около 0,57 доллара на тонну переработанной нефти [447] и с тех нор, несомненно повысились в связи с ростом объемов добычи и переработки сернистых нефтей. Увеличение сернистости нефти привадит к резкому ускорению коррозии. По данным [547] скорость коррозии аппаратов из углеродистой стали при переработке туймазинской нефти, содержащей 1,3% серы, составляет 0,94 мм/год, а ишимбайской нефти (3,4% серы) — 6,88 мм/год, т. е. в 7 раз выше. С коррозионными явлениями непосредственно связан износ двигателей, работающих на сернистом топливе. Так, скорость износа автомобильного двигателя возрастает вдвое при повышении концентрации серы в бензине от 0,12 до 0,7% [548]. [c.78]

    В. И. Касаточкин с сотрудниками [98—103, 148] все коксы, в том числе и нефтяные, относит к карбонизированным веществам. За исключением графитов все карбонизированные вещества являются аморфными сте.клоподобными высокополимера-ми. Основным структурным элементом карбонизированного вещества является плоская атомная сетка циклически полиме-ризованного атома углерода с боковыми радикалами в виде разветвленных цепей по всем трем измерениям линейно полимеризованных атомов углерода. Химические превращения в процессе термической обработки углеродистых веществ сопровождаются относительным возрастанием содержания углерода (карбонизацией) и глубокими изменениями молекулярной структуры. При этом создается межсеточная упорядоченность, увеличиваются размеры углеродных сеток и возрастает электропроводность вещества. [c.66]

    Кокс, полученный при 430—450 °С, содержит много маслянобитуминозных веществ, которые можно извлечь из него различными растворителями (спирто-бензольной смесью, трихлорэти-леном, пиридином и др.). Эти вещества препятствуют росту основных структурных элементов углеродистого (карбонизированного) вещества. После деструкции этих изолирующих веществ происходит интенсивное сращивание (сшивание) отдельных углеродистых цепей. Надо полагать, что оно происходит с участием свободных радикалов и что концентрация их имеет наивысшее значение при температурах, соответствующих экстремумам по объемной усадке. [c.190]


Библиография для Вещества углеродистые: [c.364]   
Смотреть страницы где упоминается термин Вещества углеродистые: [c.35]    [c.77]    [c.220]    [c.152]    [c.396]    [c.32]    [c.32]    [c.217]    [c.379]    [c.262]    [c.365]    [c.194]    [c.108]    [c.67]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.220 ]




ПОИСК







© 2025 chem21.info Реклама на сайте