Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия когезий

    В последнее время появились исследования, устанавливающие зависимость между энергией когезии различных групп полимера, [c.537]

    Первый член скобки представляет собой величину химического потенциала растворителя для идеального раствора. Второй член описывает отклонения от идеальности, обусловленные особенностями структуры полимерных молекул. Величина % является параметром, специфичным для данной системы полимер — растворитель и называется обычно параметром взаимодействия. Этот параметр включает в себя характеристику энергетического взаимодействия полимера с растворителем, определяемую разностью корней квадратных из плотностей энергии когезии полимера б и растворителя 6о, а также специфические для данной системы [c.33]


    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]

    Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости б (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств. [c.41]

    Растекание происходит только в том случае, если энергия адгезии больше энергии когезии, или, другими словами, если коэффициент растекания положителен. [c.62]

    Энергия когезии. С увеличением энергии когезии ослабляется сегментальное движение, соответственно, Тс возрастает. Этот давно установленный факт [2, 9] находит в последнее время все более четкое и убедительное подтверждение, позволяющее заключить, что в первую очередь величина межмолекулярного взаимодействия ответственна за значение температуры стеклования полимеров вообще и эластомеров в частности. [c.44]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]


    Плотность энергии когезии, МДж/м 271 [c.349]

    Все углеводородные каучуки отличаются небольшой собственной энергией когезии, а также малой энергией взаимодействия с сажей. Поэтому когезионная прочность сажевых смесей на основе таких каучуков в отсутствие процессов кристаллизации также мала. [c.75]

    Наиболее гибкие цепи при деформации растяжения легко ориентируются и кристаллизуются. В ориентированном же состоянии решающую роль играет энергия когезии. Образование в системе поперечных связей ограничивает сегментальное движение, что отражается на резком падении относительного удлинения (табл. 6). [c.543]

    Выражение AL/V в этой формуле характеризует плотность энергии когезии. [c.215]

    Плотность энергии когезии, в МДж/м для БНК больше, чем у НК и БСК и повышается с увеличением содержания акрилонитрила  [c.357]

    Существует зависимость между поверхностной энергией и плотностью энергии когезии вещества Е 1. Как видно из рис. 2.7, эта зависимость в случае органических полимеров имеет прямолинейный характер. На рисунке критерием оценки поверхностной энергии является критическое поверхностное натяжение а, , численно равное поверхностному натяжению жидкости, полностью растекающейся по поверхности полимера. [c.94]

    Плотность энергий когезии металлов [c.105]

    Сравнение эластических свойств вулканизатов, отличающихся структурой мономерного звена, показывает, что повышение морозостойкости связано с уменьшением мольной энергии когезии, которая составляет для полимеров на основе диэтилового эфира 4,9 кДж/моль, диэтилформаля 4,6 кДж/моль и ди(р-этоксиэтил) форМаля 4,0 кДж/моль. Возрастание энергии когезии соответствует увеличению содержания полярных атомов серы в основном звене тиоколов [36]. [c.568]

Рис.2.7. Зависимость плотности энергии когезии от критического поверхностного нат жени полимеров /56/ Рис.2.7. Зависимость <a href="/info/117625">плотности энергии когезии</a> от <a href="/info/856620">критического поверхностного</a> нат жени полимеров /56/
    Таким образом, как изменится при дегазации растворяющая способность нефти по отношению к парафинам, будет определяться тем, как при этом изменяется разница между плотностями энергии когезии нефти и парафина. Увеличение этой разницы означает ухудшение растворяющей способности нефти, что приведет к повышению температуры насыщения, и [c.42]

    Ен и Ер - удельные плотности энергии когезии нефти и парафина соответственно. [c.43]

    Вышесказанное легко представить, если обратиться к кривой Семенченко (рис. 1.1). В соответствии с теорией растворов можно считать, что плотность энергии когезии парафина будет соответствовать максимуму растворимости на кривой Семенченко. Тогда для всех нефтей, плотность энергии когезии которых располагается на левой восходящей ветви кривой, разница Е - Ер будет иметь отрицательное значение, а ее абсолютное значение будет уменьшаться по мере дегазации из-за роста энергии когезии нефти. При этом также будет иметь отрицательное значение и температура начала кристаллизации парафина в нефти понизится из-за повышения растворяющей способности последней. [c.43]

    Следовательно, у всех нефтей, энергия когезии которых ниже энергии когезии парафина, будет наблюдаться снижение температуры насыщения парафином по мере роста дегазации. Несколько иная картина наблюдается, когда нефти по плотности энергии когезии располагаются на правой нисходящей ветви кривой Семенченко. В этом случае разница Е -Ер для всех нефтей будет положительной величиной и ее абсолютное значение будет расти по мере дегазации из-за повышения энергии когезии [c.43]

    Полиуретаны на основе кристаллизующихся полиэфиров имеют наибольшее сопротивление разрыву. Высокая механическая прочность их связана со способностью кристаллизоваться и ориентироваться при деформировании. Поэтому естественно, что при сопоставимой плотности энергии когезии прочность кристаллических (или потенциально способных кристаллизоваться при деформировании) полимеров всегда существенно выше, чем аморфных эластомеров. Однако попытки найти связь между температурой плавления кристаллических полиуретанов и такими свойствами, как сопротивление разрыву и раздиру оказались неудачными (табл. 4). Вероятно, объяснение этому факту следует искать в том, что на повышение прочности оказывает влияние только лишь кристаллизация, которая развивается непосредственно в процессе деформирования эластомера. Наглядной иллюстрацией сказанного является сравнение свойств полиуретанов на основе полидиэтилен- и полиэтиленадипинатов последние кристаллизуются уже при растяжении на 50%. [c.535]

    Кроме того, в полиуретанах удлинение успешно осуществляется не только на стадии получения преполимеров, но и на стадии отверждения конечного продукта. Несоответствие абсолютных значений молекулярной массы, полученных различными авторами, обусловлено особенностями строения полимеров, а именно наличием устойчивых ассоциатов высокой энергии когезии. Использование таких методов, как светорассеяние, осмометрия, ультрацентрифугирование, химический анализ концевых групп оправдано только для молекулярной массы эластомеров не выше 2,5-10 . Так, молекулярная масса линейных полиуретанов, определенная виско-зиметрически, составила З-Ю" [42]. Для полиуретанов молекулярной массы 5-10 и более можно считать вполне надежными данные спектров ЯМР [43]. [c.537]


    Как видно из табл. 2.6, для металлов также наблюдается достаточно четкая корреляция между адгезионной прочностью органических покрытий и плотностью энергии когезии металлов, что подтверждает справедливость [c.105]

    Несколько исследователей прямо измерили дальнедействующие силы Вап-дер-Ваальса между отшлифованными пластинками. Их результаты согласуются в пределах ошибки опыта с теоретически вычисленными. Это показывает, что теория Лондона является надежной для очень больших расстояний между макроскопическими телами (0,1 — 1 мкм). При очень малых расстояниях величина энергии когезии неполярных жидкостей хорошо согласуется со значением, вычисленным на основе теории Лондона для случая притяжения между молекулами, находящимися в тесном контакте. Поэтому нельзя считать, что эта теория, справедливая для больших и малых расстояний, не будет применима для промежуточных расстояний (папример, 100 —1000 А), используемых в теории коллоидной стабильности, где прямые измерения невозможны. [c.81]

    Однако, исходя из адсорбционной теории, нельзя объяснить, почему парафиновые частицы, способные взаимодействовать с подложкой только дисперсионными силами и обладающие очень низкой энергией когезии (около 0,26 кДж/см у н-декана), образуют на поверхности стали достаточно прочные отложения. Объяснить такое несоответствие возможно, лишь допустив различный механизм взаимодействия парафиновых частиц с поверхностями различной природы. [c.106]

    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    Натуральный каучук, как и СКИ-3, характеризуегся низким значением плотности энергии когезии, однако иевулканизованные сажевые смеси на основе НК отличаются высокой когезионной прочностью (сопротивление разрыву 1,5—2,0 МПа по сравнению с 0,1—0,4 МПа для СКИ-3), НК обладает также значительно лучшей адгезией к стали и успешно применяется в производстве клеев. Поэтому проблема получения синтетического полиизопрена, по свойствам не уступающего натуральному, была прежде всего связана с выяснением отличий в строении, определяющих различия в свойствах этих двух полимеров. [c.226]

    Выражепие для энергии взаимодействия по теории Лондона применяют для двух электронных осцилляторов, имеющих одинаковую характеристическую частоту, но различные поляризуемости. Б случае различных частот взаимодействие будет слабее. Из этого следует, что общее значение А всегда положительно, независимо от того, имеет ли А1, или А 2 большую энергию когезии. Следовательно, капли эмульсии будут всегда притягиваться вандервааль-совьши силами, имеющими равное значение для капель определенного размера независимо от типа эмульсии, так как [c.94]

    Одним 113 основных параметров оценки межмолекулярного взаимодействия компонентов нефти, удобных для практических целей, является плотность энергии когезии, численно равная от-нощению энтальпии испарения жидкого компонента к его мольному объему [36]. Необходимые данные об энтальпиях испарения для расчета плотности энергии когезии и соответственно параметра растворимости жидких компонентов можно определить либо из непосредственных калориметрических данных, либо по температурной зависимости давления насыщенного пара, описываемой известным уравнением Клаузиуса — Клапейрона, либо по эмпирическим формулам через температуру кипения компонента. Однако энтальпию испарения экспериментально можно определить липль для углеводородов, испаряющихся без разложения. Для тех соединений, температура деструкции которых ниже температуры кипения, приемлемы методы расчета параметра растворимости на основе инкрементов плотности когезии отдельных групп атомов (ЛЯ ) [37]  [c.20]

    Согласно адсорбционной теории адгезии /58/, адгезионная прочность в общем случае должна повышаться с увеличением энергии когезии материала подложки. С целью проверки применимости этого положения к металлам бьши рассчитаны плотности энергии когезии указанных металлов. Исходные физико-химические характеристики были взяты из справочника /65/. Критическая температура рассчитывалась по уравнению Гэйгса и То-доса /66/. Перерасчет теплоты парообразования к 293 К осуществлялся по уравнению Фиша и Лильмеша /67/. Полученные результаты представлены в табл. 2.6. [c.105]

    Плотность энерги[[ когезии для полярного комгюнента 1 представляется в виде суммы полярного и неполярного вкладов [c.40]

    При определении смачивания пвверхности очень полезным выражением является коэффициент растекания. Если жидкость растекается на поверхности твердого тела или жидкости, с которой она не смешивается, обе фазы притягиваются друг к другу сила притяжения направлена против сил когезии растекающейся жидкости. Таким образом, коэффициент растекания равен энергии адгезии минус энергия когезии растекающейоя жидкости. Из уравнений (68) и (75) для твердой поверхности имеем  [c.62]

    Рис 1,1 Растворимость парафина (крива I) и нафталина (крива II) в растворителях с различной плотностью энергии когезии при 25 °С Растворители 1 - пентан 2 - додецилбензол 3 - шиспогехсан 4 - изопропилбешол  [c.23]

Рис. 1,2. Растворимость асфальтенов в растворителях с различной шютностью энергии когезии при 25 °С. Растворители 1 - гептан 2 - дн-этиловый эфир 3 - толуол 4 -ксилол 5 - бензол б - четырех-хлорисгый углерод 7 - трихло-рэтнлен 8 - хлороформ 10 -хлорбензол 11 - сероуглерод 12- диоксан 13 - пиридин 14 -изоамиловый спирт 15 - этанол Рис. 1,2. Растворимость асфальтенов в растворителях с <a href="/info/1841315">различной</a> шютностью энергии когезии при 25 °С. Растворители 1 - гептан 2 - дн-<a href="/info/29911">этиловый эфир</a> 3 - толуол 4 -ксилол 5 - бензол б - четырех-хлорисгый углерод 7 - трихло-рэтнлен 8 - хлороформ 10 -хлорбензол 11 - сероуглерод 12- диоксан 13 - пиридин 14 -<a href="/info/7901">изоамиловый спирт</a> 15 - этанол
    При добыче нефти часто происходит ее дегазация. Поэтому представляет интерес, как при этом изменяется растворяющая способность дисперсионной среды. Углеводородные азы в обычных условиях характеризуются низкими значениями плотности энергии когезии, поэтому удаление их из системы всегда будет повышать плотности энергии когезии дисперсионной среды нефти. Следовательно, как при этом будет изменяться растворимость твердых компонентов, будет зависить от того, в какой из ветвей кривой Семенченко будет находиться система в данных конкретных условиях. [c.24]

    Следующим фактором, связанным с составом нефти и способным повлиять на формирование дисперсной структуры нефтей, является количество и качество дисперсионной среды, которая формируется из незастывающей части. Этот фактор влияет также непосредственно на процесс отложения парафинов на поверхности оборудования. Так, при изучении па-рафинизации промыслового оборудования в условиях месторождений Западной Сибири было установлено /21/, что легкие маловязкие нефти с больщим содержанием легких фракций, выкипающих до 300 °С, способствуют более быстрому накоплению отложений парафина по сравнению с нефтями большей плотности и вязкости. Отмечается также, что с увеличением содержания ароматических углеводородов в нефти (т.е. с ростом плотности энергии когезии дисперсионной среды) вероятность образования плотных и прочных парафиновых отложений уменьшается. [c.36]

    Согласно теории растворов неэлектролитов /11/, взаимораствори-мость компонентов тем выше, чем меньше различие между плотностями энергии когезии их молекул. При падении давления в системе при всех ситуациях происходит удаление из нефти газов, компонентов, обладающих наиболее низкой плотностью энергии когезии. Следовательно, при дегазации, в результате падения давления, независимо от конкретной ситуации всегда происходит повышение усредненной величины плотности энергии когезии нефти. Такой эффект будет тем выше, чем ниже усредненное значение молекулярной массы удаляемого газа. [c.42]

    Металл Атомный объем V. при 293 К, см Температур кипения, К, Т. Теплота испарения при Т., ДН, кДж/г-атом Теплота сублимации при 293 К, ДН кДж/гатом Плотность энергии когезии по АН, при 293 К, кДж/см Плотность энергии когезии по АН. при 293 К. К11ж/см  [c.105]

    Нетрудно предположить, что переход электронов от металла к ди-элеюфику и формирование заряда между ними будут определя ься не только прочностью связи электрона с кристаллом, которая близка у различных металлов, но и концентрацией их на поверхности металла. Как видно из табл.2.6, плотности энергий когезии (следовательно, и электронов) у различных металлов различаются весьма существенно. Наблюдающаяся закономерность позволяет предположить, что чем выше плотность энергий металла, тем больще разность давлений электронного газа между контактирующими поверхностями и тем значительнее заряд, обеспечивающий прочность адгезионной связи. Более легкая смачиваемость и более высокая работа адгезии высокоэнергетических поверхностей отмечалась ранее /56/. Давно бьию отмечено более интенсивное отложение парафина на стальных и алюминиевых поверхностях, чем на пластмассовых /41/. Более поздние исследования в промысловых условиях также подтвердили это положение. [c.112]


Смотреть страницы где упоминается термин Энергия когезий: [c.483]    [c.520]    [c.8]    [c.71]    [c.175]    [c.23]    [c.24]    [c.44]    [c.44]    [c.111]   
Физикохимия полимеров (1968) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Когезия

Мольная энергия когезии

Молярная энергия когезии некоторых полимеров в различных растворителях

Молярная энергия когезии, влияние

Органические радикалы и атомные энергия молекулярной когезии

Плотность энергии когезии

Плотность энергии когезии органических жидкостей и полимеров. Параметр растворимости Гильдебранда

Плотность энергии когезии полимеров

Полибутадиен энергия когезии

Поливинилиденхлорид молярная энергия когезии

Поливиниловый спирт молярная энергия когезии

Поливинилхлорид молярная энергия когезии

Полиизобутилен молярная энергия когезии

Полиизобутилен энергия когезии

Полиизопрен энергия когезии

Полиметилен молярная энергия когезии

Политетрафторэтилен молярная энергия когезии

Полиэтилентерефталат молярная энергия когезии

Разность плотностей энергии когезии, относительные размеры клубков в предкритической области и радиус действия межмолекулярных сил для некоторых систем полимер—растворитель Сополимеры, смеси и сплавы полимеров

Растворитель плотность энергии когезии

Свободная энергия когезии

Температура молярной энергии когезии

Удельная энергия когезии

Энергия адсорбции когезии

Энергия когезии и растворимость

Энергия когезии при температуре стеклования

Энергия когезии функциональных групп

Энергия когезии функциональных групп Ь Эпоксициклогексан, сополимеры



© 2025 chem21.info Реклама на сайте