Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость золей

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]


    Замечание. Для успешного проведения опыта необходимо иметь свежеприготовленный 1%-ный раствор таннина, для чего 0,1 г таннина растворяют в 10 мл дистиллированной воды при слабом нагревании. Необходимо отметить, что некоторый избыток таннина в растворе способствует получению более устойчивого золя, так как в этом случае таннин играет роль стабилизатора. Другими словами, при избытке таннина можно получить сравнительно устойчивые высокодисперсные золи серебра (или золота), мало чувствительные к загрязнению. [c.152]

    Основными условиями образования золей химической конденсацией являются малые концентрации исходных растворов и избыток одного из реагентов над другим, обеспечивающей формирование двойного ионного слоя (ДИС) на поверхности кристаллических частичек. ДИС наряду со связанной с ним сольватной оболочкой обеспечивает агрегативную устойчивость золя. Знак заряда коллоидной частицы зависит от соотношения реагентов при проведении реакции получения золя. [c.188]

    Некоторые осадки, полученные коагуляцией электролитами, можно пептизировать, промывая их растворителем. При этом удаляется избыток электролита, восстанавливаются структура ДИС и агрегативная устойчивость золя. [c.188]

    При прибавлении защитного коллоида в количестве, недостаточном для защиты, может происходить не повышение устойчивости золя, а понижение. Этот аффект называется сенсибилизацией, т. е. повышением чувствительности золя. [c.532]

    Очень существенное значение для получения коллоидных систем имеет концентрация реагирующих растворов. В результате химических реакций, вриводя-щих к образованию плохо растворимых веществ, при малых концентрациях реагирующих веществ получаются золи, при больших концентрациях — осадки и при весьма больших концентрациях — гели. Это хородио можно проследить ца примере реакции желтой кровяной соли К<[Ре(СК)б] и хлорида железа РеСЬ, в результате которой образуется берлинская лазурь Ре4[Ре(Ш)в]э- Если быстро смешать в эквивалентных количествах концентрированные растворы хлорида железу и желтой кровяной соли, то берлинская лазурь выделяется в виде густого геля. Небольшое количество этого геля при размешивании в большом объеме воды дает стойкий золь. Если вместо концентрированных растворов исходных веществ взять 10-кратно разбавленные растворы, то в результате реакции образуется осадок, не способный переходить в золь, сколько бы его не размешивали. Наконец, если растворы хлорида железа и желтой кровяной соли разбавить очень сильно и затем смешать, то получится устойчивый золь берлинской лазури. [c.227]

    Явление повышения порогов коагуляции (увеличение устойчивости золя) при добавлении ВМВ называют коллоидной защитой. [c.202]


    Агрегативная устойчивость золя гидроксида железа обеспечивается прежде всего наличием на поверхности дисперсных частиц двойных электрических слоев. Элементарная частица такого золя называется мицеллой. В основе мицеллы лежит нерастворимый в данной дисперсионной среде агрегат, состоящий нз множества молекул (атомов) [Ре(ОН)з] , где п — число молекул (атомов), входящих в агрегат. [c.163]

    Методом электрического распыления (эле ктро-диспергирования) пользуются для распыления различных металлов. Он основан иа том, что между двумя электродами, изготовленными в виде проволочек из данного металла и погруженными в воду, возбуждают электрическую дугу. При этом материал электродов распыляется в окружающую среду. Для получения устойчивого золя к воде предварительно добавляют немного щелочи. Металл переходит в парообразное состояние и, попадая в дисперсионную среду, благодаря низкой температуре конденсируется, образуя золь. Этим методом получают гидрозоли золота, серебра, платины и других металлов. [c.74]

    Значительное влияние ГС на устойчивость коллоидов обсуждалось в ряде работ. Так, обнаруженную аномальную , не объясняющуюся классической теорией ДЛФО, устойчивость золя арахиновой кислоты [504] и октадеканола [505] авторы свя- [c.173]

    На рис. 10.4 (кривая /) приведены данные, характеризующие агрегацию золя кварца в присутствии ЦТАБ при рН = 3, когда исходный золь кварца уже агрегировал (степень агрегации т = 2,2). Видно, что при рН = 3, как и при рН = 6 наблюдается скачкообразное изменение устойчивости золя, однако полной стабилизации системы не происходит. Расчет энергии взаимодействия частиц 5102 по теории ДЛФО показывает, что наблюдаемая агрегация связана с первичным минимумом на кривой энергии взаимодействия частиц. Наличие структурной составляющей энергии взаимодействия, возникающей при перекрытии ГС воды, а также, возможно, адсорбционных слоев ЦТАБ на кварце, препятствует непосредственному сближению частиц и достижению высоких степеней агрегации. [c.179]

    Основан он на том, что между двумя электродами, изготовленными в виде проволочек из данного металла и помещенными под водой, возбуждают электрическую дугу (рис. 180). При этом материал электродов распыляется в окружающую воду. Для получения устойчивого золя в воду предварительно добавляют немного щелочи. Исследования А. В. Думанского показали, что в действительности этот метод является в большей степени конденсационным, чем дисперсионным (по крайней мере в отношении наиболее высокодисперсной части золя). Дело в том, что, как указывают цвет и спектр дуги, при такой высокой температуре металл переходит в парообразное состояние и, попадая в дисперсионную среду, благодаря низкой температуре последней тут [c.529]

    Влияние содержания ПАВ в сточной воде на коагулируемость. сернистого железа исследовалось на примере диссольвана-неионогенного ПАВ при концентрации 0,002%. Присутствие в пластовой воде ПАВ увеличивает устойчивость золя сернистого железа из-за гидрофилизации поверхности коллоидных частиц вследствие адсорбции на них молекул диссольвана. [c.111]

    Опыт 116. Устойчивость золей желатины при различных значениях pH [c.237]

    Такие опыты были проведены автором и сотрудниками на молекулярно-гладких шариках (г 1 мм) стеклянных, метилированных, покрытых производными целлюлозы и др. в средах разной полярности, от воды до углеводородов, включая и фторированные соединения. Табл. 1 охватывает крайние случаи, которые можно охарактеризовать как проявление полной лиофобности, отвечающее коагуляции в соответствующей высокодисперсной системе, и как проявление полной лиофильности (например, метилированное стекло в гептане), отвечающее пептизации и образованию устойчивого золя в соответствующей высокодисперсной системе. В табл. 2 [c.304]

    TOB, пищевых продуктов, технических эмульсий, катализаторов и т. п. Следует помнить о нем и при подготовке сточных вод к сбросу в естественные водоемы присутствие большого количества ПАВ в сточных водах может привести к образованию устойчивых золей в водоемах, что отрицательно скажется на их экологическом состоянии. [c.283]

    Наличие на поверхности частиц групп, способных образовывать водородные связи, определяет возможность эпитаксиального механизма образования ГС. Так, исключительно высокая устойчивость золя SIO2 вблизи изоэлектрической точки [24, 502, 503] может быть также объяснена наличием граничных слоев значительной толщины, образованных при ориентации молекул воды за счет водородных связей около незаряженной поверхности, несущей недиссоциированные силанольные группы. [c.173]

    Интересно, что устойчивость золя иодида серебра с отрицательно заряженными частицами несколько выше, чем с положительно заряженными. Причина этого заключается в том, что иодид-ионы адсорбируются на агрегатах иодида серебра сильнее, чем катионы серебра .  [c.246]

    Задачи работы приготовить заданный золь сравнить защитное действие различных высокомолекулярных веществ на устойчивость золей. [c.202]

    Следует заметить, что начало коагуляции может быть определено по разным признакам — по изменению окраски золя, появлению мути, началу выделения дисперсной фазы в осадок и т. д. Появление этих признаков не всегда совпадает во времени. Кроме того, порог коагуляции в известной степени зависит и от концентрации золя. Поэтому порог коагуляции является довольно относительной характеристикой устойчивости золя по отношению к данному электролиту. Во всяком случае, всегда необходимо точно указывать условия, при которых проводилось определение порога коагуляции золя. [c.287]


    Впервые качественный подход к изучению устойчивости золей наметили Кальман и Вильштеттер в 1932 г. Первые количественные расчеты были произведены Б. В. Дерягиным в конце 30-х годов и затем завершены в работе Б. В. Дерягина и Л. Д. Ландау (1941 г.). Аналогичный подход к изучению устойчивости коллоидных систем в дальнейшем был развит и в работах голландских исследователей Фервея, и Овербека. По начальным буквам основных авторов возникшей физической теории коагуляции эту теорию теперь часто называют теорией ДЛФО. [c.290]

    Коагулянты. В качестве коагулянтов чаще всего используются сернокислый алюминий АЬ(804)3 и хлорное железо РеС1з. К недо" статкам сернокислого алюминия относится его чувствительность к температуре очищаемой воды. При низких температурах гидроокись алюминия образует сильно гидратированный и потому очень устойчивый золь. Повышение устойчивости золя отражается на скорости х.яопьеобразования. Это вызывает большой перерасход коагулянта в зимнее время. [c.150]

    Далее полученные данные о зависимости степени стабилизации золей от их возраста и концентрации свидетельствовали о том, что наибольшая устойчивость золя Agi имеет место при достижении определенной (по-видимому, близкой к предельной) плотности покрытия коллоидных частиц монослоем адсорбированных молекул алкильных эфиров полиэтиленгликоля. [c.299]

    Поэтому состав поверхностных слоев онределяется, по-видимому, ближнедействующими поверхностными силами. Они, однако, не должны прямо влиять на устойчивость золей или эмульсий против коагуляции, так как, если частицы приблизятся на расстояние нескольких молекулярных диаметров, вандерваальсовы силы притяжения станут такими большими, что частицы останутся соединенными независимо от того, слипнутся они в действительности или коалесцируют. Обратное явление наблюдается для самопроизвольно диспергируемых коллоидов, например, глобулярных протеинов для этих веществ константа Гамакера (см. стр. 93) очень близка к константе воды, так что даже тонкий гидратационный слой достаточен, чтобы удержать молекулы на расстоянии, где энергия притяжения Ван-дер-Ваальса мала по сравненпю с тепловой энергией. [c.84]

    Укрупнение частиц может происходить по нескольким причинам. Как известно, мелкие капельки и кристаллики имеют повышенное давление пара и соответственно повышенную растворимость. Увеличение давления пара или растворимости связано с линейными размерами частиц уравнением Гиббса—Томсона. Согласно этому уравнению, эффект должен быть заметен даже для частиц коллоидных размеров, поэтому в гетерогенной системе с достаточно высокой степенью дисперсности большие частицы растут за счет меньших. Так как скорость этого процесса определяется скоростью диффузии растворенного вещества от одной частицы к другой, то он наблюдается только в золях достаточно растворимых веществ. Известно, что Ag l и Ва304, которые сравнительно хорошо растворимы в воде, образуют не очень устойчивые золи. При добавлении спирта растворимость Ва804 понижается, а устойчивость золя повышается. Процессы рекристаллизационного укрупнения играют важную роль в весовом анализе и во многих других случаях. Этим же процессам приписывают, например, рост частиц галогенидов серебра при приготовлении фотоэмульсий.  [c.192]

    Чем больше напряженность магнитного поля или чем меньше устойчивость золя ферромагнетита (в отсутствие поля), тем сильнее сближаются частицы в цепочках. Таким образом, по п.лотности цепочек можно судить об устойчивости золя, о стабилизирующем и дестабилизирующем действии различных добавок. [c.124]

    Дальнюю коагуляцию (во вторичном минимуме) в гру-бодисперсных системах можно существенно замедлить, применяя в качестве стабилизатора агрегативно устойчивые золи (дисперсные системы коллоидной степени дисперсности— м). При добавлении коллоидных частиц в грубодисперсные системы в результате коагуляции или гетерокоагуляции на поверхности крупных частиц образуется защитный слой из мелких, который экранирует молекулярные силы, действующие между крупными частицами, и тем самым способствует стабилизации системы. [c.154]

    Прежде всего максимальная вязкость системы т]1- = = 11, + т1э, способной к образованию сплошной структуры, не может служить характеристикой этой системы. Она определяется в первую очередь конструктивным параметром прибора Я, на котором проводится измерение. Кроме того, величина т] для такой системы никак не связана с прочностью структурной сетки (величинами аГ ). Это на первый взгляд парадоксальное качество т) на самом деле очевидно если при некотором режиме течения цепи различной прочности имеют одинаковую длину (I = Я), то их сопрагивление потоку будет одинаковым. Это относится к любой структуре—одинаковые по структуре сетки создают одинаковое гидродинамическое сопротивление независимо от их прочности. Эго так же естественно, как и то, что прочность частиц не входит в формулу Эйнштейна для вязкости устойчивых золей и суспензий. Реологический параметр, который зависит от прочности сетки для таких систем,—это верхняя граница диапазона скоростей сдвига, в пределах которого цепь (структура) остается неразрушенной в том смысле, что размер I цепей (фрагментов трехмерной структуры) остается равным характерному размеру измерительного прибора Я. [c.210]

    Сущность процесса диссолюции состоит в неполном растворении частиц дисперсной фазы при сохранении их общего числа. Это способствует уменьшению удельной поверхности дисперсной фазы, снижению общего запаса свободной поверхностной энергии и, как результат, повышению кинетической устойчивости золя. [c.325]

    В некоторых случаях прибавление весьма малых количеств вы-сокопол 1мера к гидрофобному золю приводит к прямо противоположному результату устойчивость золя резко понижается. Это явление называется сенсибилизацией или астабилизацией коллоидного раствора. Согласно теории П. Н. Пескова и Л. Д. Ландау астаби-лизация происходит тогда, когда защищающий высокополимер добавляют к гидрофобному золю в таких ничтожно малых количествах, которые ниже предельного порога его защитного действия, т. е. ниже его золотого или рубинового защитного числа. Иными словами, астабилизация наступает, когда частиц высокополимера не хватает иа. покрытие и защиту всей поверхности коллоидных частиц [c.387]

    Поликремневые кислоты представляют собой гид-ратные формы SiOs. Это слабые, малорастворимые в воде электролиты. Они образуются при полимеризации монокремневой кислоты в виде золя. Устойчивость золя кремневой кислоты зависит от многих факторов концентрации SiO , температуры, pH и др. Со временем золь теряет устойчивость и переходит в гель. [c.155]

    При пептизации, как и при коагуляци>1, не наблюдается стехиометрических отношений между количествами пептизатора пептизированного осадка. Для пептизации осадка и получения лиозоля не требуется, чтобы вся поверхность частиц была покрыта слоем адсорбированного пептизатора. Так, Фаянс установил, что для получения устойчивого золя бромида серебра частицы его должны быть покрыты всего на А—Vio часть от всей поверхности пептизатором, которым в этом случае будет электролит, содержащий бромид-ионы. Однако от количества пептизатора зависит дисперсность частиц в полученном золе. При малом содержании введенного пептизатора образуются частицы высших порядков, со- [c.234]

    Если же при смешении одно из исходных веществ взято в избытке, образуется золь. П. П. Веймарн, указавший на особую положительную роль избытка одного из веществ, принимающих участие в образовании коллоидной системы, полагал, что этот избыток необходим для понижения растворимости дисперсной фазы. Однако гораздо более правильно об-ьяснить получение устойчивого золя Agi в присутствий избытка AgNOa или KI тем, что эти электролиты являются стабилизаторами частиц иодида серебра, образуя на них двойной электрический слой. [c.246]

    В предельном случае потенциал поверхности — фо-потенциал — при коагуляции может сохранять достаточно высокие значения (более 100 мВ). При этом соответствие между -потенциалом, который при увеличении концентрации раствора электролита может значительно падать, и фо-потенциалом теряется. Это легко понять из схемы, представленнной на рис. IX, 116. Теряется также связь между устойчивостью системы и фо- и -потенциалами. Таким образом, становится понятным, почему -потенциал далеко не всегда может являться критерием устойчивости золя. [c.292]

    Когда потенциал фо частиц невысок, устойчивость золя зависит от значения птзнтшя.пя ппвррунпгтн, а адсорбционные явления определяют коагуляционный процесс этим, как мы видели, объясняется правило Эйлерса — Корфа. Для объяснения коагуляции золя с сильно заряженными частицами теория ДЛФО исходит уже из цредставлений о сжатии двойного электрического слоя, согласно которым объясняется правило Шульце — Гарди. Существенно, что оба правила приложимы к золям одной и той же природы, а иногда и при одинаковом составе электролита. [c.295]


Смотреть страницы где упоминается термин Устойчивость золей: [c.310]    [c.11]    [c.174]    [c.175]    [c.176]    [c.177]    [c.93]    [c.74]    [c.194]    [c.125]    [c.127]    [c.87]    [c.297]    [c.298]    [c.299]   
Смотреть главы в:

Физическая химия и химия кремния Издание 3 -> Устойчивость золей


Физическая и коллоидная химия (1988) -- [ c.0 ]

Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.25 , c.128 , c.151 , c.156 , c.162 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.26 , c.152 ]

Физическая и коллоидная химия (1974) -- [ c.0 ]

Общая химия Биофизическая химия изд 4 (2003) -- [ c.510 ]




ПОИСК





Смотрите так же термины и статьи:

Виды устойчивости гидрофобных золей

Золь

Исследование агрегативной устойчивости золей, коагуляция и седиментация

Мер золит

Методы определения устойчивости и коагуляции золей и суспензий

Мышьяка сульфид, золь устойчивость

Определение зоны коагуляции и устойчивости смеси двух ь золей (взаимная коагуляция)

Опыт 116. Устойчивость золей желатины при различных значениях pH . Опыт 117. Демонстрация явления коацервации . Опыт 118. Получение гелей

Ртуть сульфид, золь, понижение устойчивости

Серебра бромид, золь устойчивость, влияние ПАВ

Серебра иодид, золь устойчивость

Устойчивость гидрофобных золей

Устойчивость золей агрегативная

Устойчивость золей агрегатная

Устойчивость золей кинетическая

Устойчивость золей, теория ДЛФО

Устойчивость и коагуляция лиофобных золей

Устойчивость и разрушение золей и растворов высокомолекулярных соединений Устойчивость дисперсных систем

Устойчивость концентрированных золей

Факторы устойчивости лиофобных золей

золы



© 2025 chem21.info Реклама на сайте