Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабилизатор коллоидной, системы

    Согласно общепринятой мицеллярной теории строения коллоидных растворов, золь состоит из двух частей мицелл и интерми-целлярной жидкости. Мицелла — это структурная коллоидная единица, т. е. частица дисперсной фазы, окруженная двойным электрическим слоем. Интермицеллярной (т, е, межмицеллярной) жидкостью называют дисперсионную среду, разделяющую мицеллы, в которой растворены электролиты, неэлектролиты и ПАВ, являющиеся стабилизаторами коллоидной системы. Частицы дисперсной фазы лиофобных золей имеют сложную структуру, которая зависит от условий получения золей. [c.396]


    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]

    Консистентные смазки — это пластичные коллоидные системы, существенно отличающиеся по своей природе и свойствам от жидких масел. Их получают путем введения в жидкие масла загустителей и других компонентов, придающих им специальные свойства (присадки, наполнители, стабилизаторы и т. п.). [c.185]

    Мицелла — это структурная коллоидная частица, т. е. частица дисперсной фазы, окруженная двойным электрическим слоем. Интермицеллярной жидкостью называют дисперсионную среду, разделяющую мицеллы, в которой растворены электролиты, неэлектролиты и поверх-ностно-активные вещества, являющиеся стабилизаторами коллоидной системы. [c.137]


    Очень часто в полученных тем, или иным методом лиозолях помимо мицелл, электролита — стабилизатора и растворителя содержатся низкомолекулярные примеси. Например, золь иоДида серебра, полученный в результате взаимодействия нитрата серебра и иодида калия, всегда содержит значительное количество индифферентного электролита — нитрата калия, В других случаях электролиты и иные низкомолекулярные примеси могут попадать в коллоидные системы вследствие загрязненности исходных продуктов или по другим причинам. [c.255]

    Прн температурах выше 150 °С антиокислительные присадки, как правило, сами подвергаются окислению и разложению. В этих условиях разрушается коллоидная система продукты окисления— топливо . Этот процесс регулируется не антиокислителями, а специальными стабилизаторами коллоидной системы — диспер-гентами. [c.293]

    При изготовлении латексных смесей целесообразно использовать свежеприготовленные дисперсии и эмульсии ингредиентов. В случае хранения их следует непрерывно перемешивать (частота враш ения мешалок 30—40 об мин), не допуская вспенивания. Важное значение при изготовлении латексной смеси имеет порядок введения ингредиентов. Обычно в латекс сначала вводят р-ры стабилизаторов коллоидной системы, а затем дисперсии вулканизуюш,их агентов, ускорителей вулканизации, антиоксидантов, наполнителей, эмульсии пластификаторов и, наконец, дисперсию пО. [c.20]

    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Коллоидные системы можно получить в результате химических реакций почти всех типов реакций обмена, окислительно-восстановительных, гидролиза и др. Обязательными условиями получения коллоидных систем в этом случае является образование малорастворимого вещества, низкая концентрация реагирующих веществ и для реакции между растворенными веществами — избыток одного из реагентов, который необходим как стабилизатор коллоидной системы. [c.184]

    Введение активатора вулканизации 2пО в латексы, содержащие аммиак, приводит к их медленной астабилизации. В этом случае устойчивость смеси повышают, удаляя предварительно аммиак из латексов или вводя в смесь дополнительный стабилизатор коллоидной системы. [c.19]

    Как указывалось, на устойчивость коллоидной системы оказывает большое влияние стабилизатор — вещество ионного или молекулярного строения, адсорбирующееся на ядрах частиц. При ионном стабилизаторе вокруг ядер мицелл возникают двойные электрические слои, затрудняющие их объединение электрический фактор). [c.83]

    Hon среде и устойчивость которых обеспечивается благодаря стабилизатору, адсорбированному на поверхности частиц. Таким образом, между классическими коллоидными системами и растворами полимеров не существует резкой границы. [c.15]

    Существенно, что как химическая, так и физическая теории строения мицеллы приводят к одним и тем же выводам, а именно к тому, что ионы электролита — стабилизатора препятствуют дальнейшему росту кристаллика, сообщают ему заряд и тем самым способствуют агрегативной устойчивости коллоидной системы. [c.242]

    Растворение ВМВ не требует присутствия в системе стабилизатора. Наконец, растворы ВМВ находятся в термодинамическом равновесии и являются обратимыми системами. К таким системам применимо правило фаз Гиббса. Наибольшее значение в этом отношении имеет работа Каргина с сотрудниками, в которой было установлено, что диаграмма состояния растворов ацетилцеллюлозы в различных растворителях — хлороформе, бензоле и др. аналогична диаграмме состояния низкомолекулярных веществ типа вода — фенол, вода — анилин и др. ( 61). Правило фаз к коллоидным системам не применимо. [c.358]

    Было затрачено много труда, прежде чем высокомолекулярные соединения были выделены в специальную группу. Установлено, что помимо способности к самопроизвольному растворению (академик Каргин и его школа) высокомолекулярные вещества образуют обратимые системы, агрегативно устойчивые без стабилизаторов. В то же время в нерастворяющей или плохо растворяющей среде высокомолекулярные вещества способны образовывать диспергированные частицы со свободными поверхностями раздела — лиофильные коллоидные системы. Таковы системы различных полимеризационных смол и др. [c.240]


    Поверхностно-активные вещества не только являются стабилизаторами образующейся в результате эмульсионной полимеризации коллоидной системы — латекса, но и играют важную роль при протекании самого процесса эмульсионной полимеризации. Во-первых, они способствуют эмульгированию мономера, во-вторых, образуют в растворе мицеллы, в которых происходит солюбилизация мономера и начинается процесс роста полимерно-мономерных частиц. В результате образуется высокоразвитая поверхность раздела между полярной и неполярной фазами, которая является одним из основных факторов, определяющих высокую скорость эмульсионной полимеризации. [c.27]

    Снижение поверхностной энергии имеет место и при стабилизации коллоидной системы, достигаемой введением стабилизаторов, которые, адсорбируясь на границе раздела фаз, уменьшают поверхностное натяжение. Самопроизвольный процесс слипания частиц при этом значительно замедляется и коллоидная система длительное время может сохранять свою агрегативную устойчивость. [c.65]

    Коллоидные системы обладают большой свободной энергией и в соответствии со вторым законом термодинамики будут стремиться к равновесному состоянию, характеризующемуся разделением системы на две фазы, имеющие минимальные межфазовые поверхности и, следовательно, минимальную свободную поверхностную энергию. Отсюда становится понятным, что стабилизаторы, адсорбируясь на дисперсной фазе и снижая тем самым количество свободной энергии, будут способствовать устойчивости системы. [c.111]

    Из мыльных смазок наиболее широко распространены кальциевые смазки (солидолы). Они содержат от 8 до 20Р/о кальциевото мыла, диспергированного в веретенном или машинном масле. Готовая смазка всегда содержит небольшое количество воды (до 4 /о), являющейся стабилизатором коллоидной системы масло-мыло. В отсутствии воды эта система распадается на составные части. [c.246]

    Некоторыми исследователями сделан вывод о возможности стабилизации эмульсий ненасыщенными слоями стабилизатора, представляющими собой подобие двумерного газа из ориентированных дифильных молекул. Ненасыиденность таких слоев, имеющая место и в латексных системах дала повод в данном случае усомниться в стабилизирующем действии структурно-механического фактора, тем более, что проведенные измерения не показали наличия структурной и даже просто повышенной вязкости оболочек из поверхностно-активных веществ на межфазной границе. Кроме того, показано, что стабильные эмульсии могут быть получены при помощи эмульгаторов (некаль, триэтаноламин), заведомо не способных давать механически прочные адсорбционные пленки. И, наконец, если бы устойчивость эмульсий обуславливалась только структурно-механическим фактором, невозможно было бы наблюдаемое в ряде экспериментов соблюдение известного правила электролитной коагуляции Шульце—Гарди. С. М. Леви и О. К. Смирновым обнаружено отсутствие в широких пределах связи между длиной углеводородного радикала молекулы эмульгатора и стабильностью коллоидной системы, что также говорит против объяснения устойчивости эмульсий только образованием на поверхности глобул механически прочного адсорбционного слоя. [c.12]

    Следует подчеркнуть всю условность термина коллоидная химия . Коллоидные системы представляют собою системы, содержащие в виде дисперсных частиц не молекулы, а агрегаты молекул. Наиболее типичный процесс для коллоидных систем — коагуляция сводится к слипанию этих агрегатов в еще более крупные под действием межмолекулярных а не химических сил. Другие процессы, характер[ьГё для коллоидных систем (физическая адсорбция, электрофорез и т. д.), также являются в основном физическими или физико-химическими. Лишь при взаимодействии коагулятора со стабилизатором (веществом, находящимся в виде адсорбционного слоя на поверхностн коллоидных частиц и [c.13]

    Привыкание можно объяснить разными причинами. Положительное привыкание может происходить в случае добавок небольших количеств электролитов, способных иептизировать коллоид, а отрицательное привыкание является следствием астабилизи-рующего влияния на золь первых порций электролита при постепенном его прибавлении (Глазман). Другое объяснение сводится к тому, что в результате медленной реакции между золем и электролитом образуются новые соединения, обладающие свойством стабилизатора коллоидной системы (Крестииская). [c.130]

    Прядильная композиция состоит из водной дисперсии ПТФЭ, загустителя и стабилизатора коллоидной системы. Волокнообразующие свойства дисперсии определяются рядом показателей — содержанием ПТФЭ, величиной и формой частиц, pH среды, кинетической и агрегативной устойчивостью системы. Мол. масса ПТФЭ оценивается в несколько миллионов. Размер частиц составляет 0,05—0,5 мкм большинство из них имеет форму, близкую к сферической, и лишь несколько процентов — удлиненную. Содержание полимера в дисперсии ок. 60% pH 10. [c.394]

    Обсуждение результатов приведенньгх работ позволяет сделать вывод о том, что нельзя считать универсальным какой-либо один фактор устойчивости. Необходимо для каждой конкретной коллоидной системы устанав-ливатв причины стабилизации, принимая во внимание возможность одновременного действия ее различных механизмов. Относительная роль каждого из них может изменяться и зависит от конкретных обстоятельств типа стабилизатора, степени адсорбционной насьпценности частиц, концентрации дисперсной фазы и др. [7, 8]. [c.14]

    При суспензионной полимеризации и сополимеризации стирола в случае применения стабилизаторов суспензии - поливиниловых спиртов (ПВС) образуются сточные воды, представляющие собой седиментационно- и аг-регативно-устойчивые коллоидные системы. В связи с тем, что по технологии очистки вод производства стирола они должны подаваться на биологические очистные сооружения, необходимо отделение частиц дисперсной фазы. [c.97]

    Данные исследований Б. В. Лосикова, Л. А. Александровой и В. М. Туголукова в области кальциевых солей органических сульфокислот показывают, что стабилизирующий эффект и моющее действие, вызываемые этими продуктами, находятся в прямой зависимости от их молекулярного веса и устойчивости собственных растворов в масле [5, 27]. Таким образом, поведение моюпщх. присадок должно быть вполне аналогично поведению стабилизаторов в классических коллоидных системах. [c.359]

    Пластичные смазки — мазеобразные продукты, не обладающие текучестью при обычных температурах, цредставляющие собой особый класс смазочных материалов, приготовляемых путем введения в смазочные масла специальных, главным образом твердых мелкодисперсных загустителей, ограничивающих текучесть масел. Смазки — это коллоидные системы, имеющие пространственную структуру, образованную частицами загустителя. Жидкая фаза удерживается в полутвердом состоянии благодаря силам притяжения твердых частиц, а также механически включается внутрь кристаллов загустителя. Электронной микрофотографией, а также рентгеноструктурным анализом установлено, что большинство смазок имеет волокнистую структуру. Некоторые вещества (вода и др.), называемые стабилизаторами, повышают прочность коллоидной структуры. [c.374]

    Коагуляция моягет происходить при введении различных электролитов и неэлектролитов, механическом воздействии, нагревании или замораживании. Наиболее важное место среди астабилизующих факторов занимает введение электролитов. Электролитная коагуляция особенно ярко протекает в тех коллоидных системах, в которых стабилизатор имеет ионный характер и устойчивость в огромной степени обеспечивается электростатическим отталкиванием коллоидных частиц. Коагулирующее действие электролита заключается в его влиянии на свойства двойного электрического слоя, в результате чего происходит уменьшение электростатического отталкивания частиц, а значит и возможное их слипание. В зависимости от интенсивности коагулирующего влияния электролита возмонша различная вероятность слипания частиц (меньшая или равная единице) и, соответственно, протекает медленная или быстрая коагуляция. Подробное описание механизма и правил электролитной коагуляции излагается в учебниках по коллоидной химии. [c.107]

    Силами отталкивания могут являться электрические силы, возникающие в результате избирательней адсорбции межфазной поверхностью одного из ионов электролита, пргГсутствующего в системе. Поскольку частицы дисперсной фазы по своей природе одинаковы и адсорбируют всегда определенный ион, все они приобретают электрический заряд одного и того же знака и испытывают взаимное отталкивание, что препятствует сближению их на такие расстояния, где уже могут действовать весьма значительные аттракционные силы. Другой причиной, препятствующей сближению коллоидных частиц до расстояний, на которых начинают превалировать силы сцепления, может явиться образование на поверхности частиц сольватной оболочки из молекул среды. Такая оболочка возникает в результате адсорб ции дисперсной фазой либо молекул среды, либо молекул или ионов третьего компонента (стабилизатора) системы. Помимо этих двух факторов существуют и другие факторы, обеспечивающие агрегативную устойчивость коллоидным системам. Подробно все факторы устойчивости рассмотрены в гл. IX. [c.20]

    Мы рассмотрели строение мицелл, у которых ионогенная часть образуется в результате адсорбции стабилизующего электролита, отличающегося по своей химической природе от вещества дисперсной фазы. В других случаях ионогенная часть мицеллы может образоваться из вещества самого агрегата. Примером такой коллоидной системы может служить достаточно постаревший гидрозоль двуокиси кремния. Поверхность агрегата, реагируя с окружающей его водой, образует метакремневую кислоту HaSiOa, которая и будет являться стабилизатором. Строение мицеллы такого золя, очевидно, следует изображать формулой.  [c.244]

    Если же при смешении одно из исходных веществ взято в избытке, образуется золь. П. П. Веймарн, указавший на особую положительную роль избытка одного из веществ, принимающих участие в образовании коллоидной системы, полагал, что этот избыток необходим для понижения растворимости дисперсной фазы. Однако гораздо более правильно об-ьяснить получение устойчивого золя Agi в присутствий избытка AgNOa или KI тем, что эти электролиты являются стабилизаторами частиц иодида серебра, образуя на них двойной электрический слой. [c.246]

    Коагуляция при разбавлении или концентрировании коллоидной системы. Наблюдающуюся в некоторых случаях коагуляцию при разбавлении гидрозолей водой можно объяснить -стабилизующего электролита с поверхности частиц в дисперсионную среду, что обусловливает падение за ряда частицы. При этом, конечно, может происходить и гидролиз стабилизатора, вслед- [c.310]

    Нестабнлизированная пена быстро разрушается жидкостная пленка между пузырьками газа быстро утоньшается, лопается пузырьки сливаются (процесс коалесценции), пена перестает существовать. Стабилизованная пена может более или менее длительно сохраняться, не претерпевая коалесценции. Согласно исследованиям П. А. Ребиндера, лучшими стабилизаторами пен являются вещества, образующие в жидкостных пленках (прослойках между пузырьками газа) коллоидные системы. Сюда в первую очередь относятся водорастворимые белки. Гетерогенность и малая устойчивость пен во времени приближает их к коллоидным системам. [c.268]

    Коллоидные системы могут быть получены методом конденсации с помощью реакций почти любого типа, если только для этого существуют подходящие условия малая растворимость полученного соединения и наличие в системе стабилизатора — электролита или вещества, которое адсорбируется на поверхности образующейся коллоидной частицы и предупреждает ее слипание с другими частицами. Кроме того, концентрация электролита, не являющегося стабилизатором в такой системе, не должна превышать порога коагуляции, так как в противном случае золь будет неустойчивым и ско-агулирует.. [c.15]

    Следует помнить, что уравненне Рэлея справедливо для очень разбавленных растворов, так как оно не учитывает вторичного рассеяния света частицами. Поэтому стандартный раствор должен быть сильно разбавленным. Исследуемый раствор также приходится разбавлять примерно до такой гке концентрации. При разбавлении коллоидной системы может произойти десорбция стабилизатора, что приведет к нарушению агрегативной устойчивости системы и к агрегации частиц, т. е. к изменению их размера. В этом случае измерение концентрации по светорассеянню невозможно. Чтобы избежать агрегации, разбавление коллорщпой системы проводят раствором стабилизатора. [c.29]

    Снижение поверхностной знергии, а значит более устойчивое (юстояние системы, как об этом у ке говорилось в гл. И практикума, возможно либо в результате уменьн1ения поверхности (коагуляция), либо в результате уменьшения поверхностного натяжения за счет адсорбции третьего компонента стабилизатора на границе раздела фаз (стабилизация). Следовател1.но, присутствие в системе стабилизатора может обеспечивать постоянство размера частиц и является необходимым условием существования коллоидной системы. [c.95]

    Обычные коллоидные системы являются принципиально агрега-тивпо неустойчивыми. Присутствие стабилизатора на поверхности частиц обеспечивает временную устойчивость этих систем. Различные, порой незначительные воздействия на систему приводят к нарушению ее устойчивости, к процессу коагуляции. Поэтому вопросы устойчивости коллоидных систем составляют важнейшую проблему, которая может быть решена лишь нри глубоком теоретическом и экспериментальном изучении явления коагуляции. [c.107]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]

    Однако еще на ранней стадии развития науки о коллоидах было установлено, что одного только механического измельчения или физической конденсации недостаточно для получения агрега-тйвноустойчивой коллоидной системы. Необходим третий компонент— стабилизатор, который создает защитный адсорбционный слой вокруг частиц. Такими стабилизаторами могут быть ионы и молекулы неорганических веществ, а также поверхностноактивные органические соединения, мыла, высокомолекулярные соединения (стр. 153 и сл.). [c.98]

    Метод самопроизвольного диспергирования твердого вещества в жидкой среде приводит к образованию двухфазной устойчивой коллоидной системы. Самодиспергирование совершается без внешних механических воздействий на этот процесс так, например, некоторые масла могут самопроизвольно эмульгироваться в воде при наличии в среде стабилизатора (15—35% натриевого мыла). [c.116]

    Коллоидным системам свойственна агрегативная неустойчивость, преодолеваемая лишь путем адсорбции ионов или молекул на частицах дисперсной фазы. Таким образом, агрегативно-устойчивая коллоидная система, в принципе, должна состоять из трех компонентов диспергированных чаетиц, среды и стабилизатора. [c.294]


Смотреть страницы где упоминается термин Стабилизатор коллоидной, системы: [c.101]    [c.22]    [c.23]    [c.21]    [c.394]    [c.389]    [c.282]    [c.432]    [c.348]   
Физическая и коллоидная химия (1988) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные

Стабилизаторы

Стабилизаторы систем



© 2025 chem21.info Реклама на сайте