Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория химической связи и ее задачи . 16. Уравнение Шредингера для молекул

    Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей химических реакций можно выделить две основные задачи расчет поверхности потенциальной энергии элементарного акта и расчет вероятности образования и времени существования переходного состояния. Первая задача связана с решением уравнения Шредингера для системы частиц, образующих активированный комплекс. Эта проблема очень сложна и в настоящее время приближенно решается с помощью современных ЭВМ только для простейших реакций. Поэтому в основном теория развивается в поисках методов оценки энергии и энтропии образования активированного комплекса исходя из свойств реагирующих молекул. [c.568]


    Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекулы или кристалла. Независимо от типов химической связи причина ее образования — одна. Химическая связь образуется, если электроны взаимодействующих атомов получают возможность двигаться одновременно вблизи положительных зарядов нескольких ядер. Задача заключается в том, чтобы достаточно правильно описать главные детали этого движения многих частиц и научиться рассчитывать в различных участках молекулы электронную плотность, обеспечивающую связывание атомов. Оказалось, что получить даже качественно правильные решения уравнения Шредингера удается не всегда. Поэтому в настоящее время применяются для объяснения свойств химической связи разнообразные приближенные теории, часто сильно отличающиеся друг от друга. Из методов квантовой химии наиболее известны два подхода к расчету молекулярных систем — метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО). [c.101]

    Расчет потенциальной кривой молекулы представляет как раз одну из основных задач теории химической связи. Эмпирическая формула для расчета была предложена Морсом и носит его имя. Проблема химической связи с точки зрения квантовой механики сводится к вопросу, какую же волновую функцию следует применить в каждом конкретном случае и какой физической картине отвечает новое распределение электронной плотности в данной молекуле. Современная теория химической связи, базирующаяся на квантовой механике, исходит из того, что никаких особых сил химического взаимодействия, кроме электрических, не существует. Гравитационные и магнитные силы, действующие между электронами и ядрами, гораздо меньше электрических и их можно не учитывать. Электронные взаимодействия, хотя и носят электростатический характер, представляют собой (вследствие волновых свойств электронов) взаимодействие не точечных зарядов, а электронных облаков. Это обстоятельство является решающим и именно оно создает трудности для расчета энергии молекул по уравнению Шредингера. Требуется отыскать решение этого уравнения уже не для отдельного атома, а для всей молекулы в целом (вводя в него параметры, характеризующие данную молекулу). Строго решить уравнение Шредингера не удалось пока ни для одной молекулы. [c.71]

    В отличие от упомянутых в предыдущем параграфе модельных, наглядных представлений о химической связи квантовомеханический подход есть способ математического описания состояния (энергетического, пространственного) электрона в той или иной-системе (атоме, молекуле, кристалле и т. п.). Естественно, что может существовать и на самом деле существует несколько математических методов решения одной и той же квантовомеханической задачи о движении электрона. Эти методы не очень строго называют теориями химической связи, хотя они тождественны в своей физической основе и опираются на один и тот же расчетный аппарат волновой механики при этом, однако, различаются исходные позиции и из-за вынужденной приближенности расчетов (как уже отмечалось в гл. 4, уравнение Шредингера точно решается в настоящее время только в случае одноэлектронной задачи) отличаются количественные результаты, получаемые при различных степенях приближения. Поэтому в зависимости от объекта рассмотрения (конкретной молекулы) или поставленной задачи используются разные более или менее равноправные методы. Здесь будут рассмотрены два из них метод валентных связей (ВС) и метод молекулярных орбиталей (МО) первый благодаря его большей наглядности и связи с предыдущими теориями хид и-ческой связи, в частности с теорией Льюиса—Ленгмюра электронных пар, а второй — из-за лучшего описания строения и свойств, молекул при использовании его простейшей формы. [c.107]


    Вследствие того что молекула представляет собой систему нескольких ядер и электронов, точное решение уравнения Шредингера для нее невозможно. Поэтому в квантовой теории химической связи, как и в теории многоэлектронного атома, используют различные приближения, количество которых возрастает со сложностью задачи. [c.27]

    В настоящее время нет единой теории химической связи. Основные разработки ее базируются на использовании выводов и методов квантовой механики. Волновое уравнение Шредингера, за единичными исключениями, не может быть решено строго для систем, содержащих более двух частиц. Поэтому все методы применения его дл5 расчета молекул основаны на использовании тех или других упрощающих допущений. Получили развитие главным образом два метода квантовомеханического расчета молекул — метод валентных связей (ВС) и метод молекулярных орбиталей (МО). Каждый из этих методов может применяться в различных вариантах в зависимости от вида рассматриваемых молекул и от постановки задачи. [c.59]

    Следует отметить, что точное решение уравнения Шредингера для конкретных задач, встречающихся в теории атома и молекулы, сопряжено с чрезвычайно большими математическими трудностями, которые удалось преодолеть только в немногих случаях. Точное решение найдено пока только для одноэлектронных систем атома водорода и водородоподобных ионов, а также ионизированной молекулы водорода Нг+. Для других атомов и молекул в настоящее время возможно получение только п р и-ближенных решений уравнения Шредингера. Эти решения имеют большое значение для химической науки, так как они объясняют природу и свойства химических связей. Поэтому прежде чем приступить к рассмотрению результатов квантовомеханической трактовки химической связи, целесообразно познакомиться с некоторыми математическими приемами, используемыми при приближенном решении уравнения Шредингера. [c.150]

    Таким образом, в адиабатическом н валентном приближениях основной задачей теории химической связи является нахон дение одноэлектронных уровней и одноэлектронных орбиталей системы путем решения зфавнения Шредингера (1.7). Здесь эффективных одноэлектронный потенциал (1.1), действующий на каждый (валентный) электрон, считается суммой потенциалов атомных остовов П.Т1ЮС результирующий потенциал всех остальных валентных электронов системы, а иод решением уравнения (1.7) подразумевается, конечно, приближенное решение, так как ввиду наличия многих притягивающих центров — ядер или атомных остовов — потенциал (1.1) для молекулы или кристалла еще более сложен, чем для атома. [c.21]

    Отличительной особенностью химической связи, приводящей к образованию устойчивой многоатомной системы, является, как известно, существенная перестройка электронных оболочек связывающихся атомов. Отсюда следует, что теория, призванная объяснить химическую связь, должна адекватно описывать взаимодействия и процессы перестройки электронных оболочек. Общий подход к решению этой задачи дает квантовая механика, сводящая описание электронного распределения в молекуле к нахождению волновой функции, удовлетворяющей соответствующему уравнению Шредингера. Однако его решение в практически важных с.пучаях невозможно без введения ряда приб.лижений, позво.ляю-щих перейти от общих уравнений квантовой механики к уравнениям, которые могут быть решены на современных ЭВМ. Эти приближения вместе с резу.чьтирующимп уравнениями для волновой функции молекулы составляют математическую основу квантовой химии, на которой в свою очередь строятся полуэмпирические методы и теории химической связи. [c.7]


Смотреть главы в:

Физическая химия -> Теория химической связи и ее задачи . 16. Уравнение Шредингера для молекул




ПОИСК





Смотрите так же термины и статьи:

Молекулы связь

Связь теория

Теория химическои связи

Теория химической связи

Уравнение связи

Уравнения Шредингера

Уравнения химические

Химическая связь

Химическая связь связь

Химическая теория

Химический связь Связь химическая

Шредингер

Шредингера уравнение молекула



© 2025 chem21.info Реклама на сайте