Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрические взаимодействия

    Информацию о строении вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений, магнитных и электрических взаимодействий, механических, термических, электрических и других характеристик веществ. [c.140]


    Сложность точных математических решений затрудняет применение электростатической теории к более концентрированным растворам, но она развивается в этом направлении. Основным недостатком электростатической теории является то, что почти не учитывается взаимодействие ионов с молекулами растворителя. Использование диэлектрической проницаемости как макроскопической характеристики раствора не позволяет учесть электрическое взаимодействие ионов с дипольными молекулами растворителя на малых расстояниях. Этот недостаток также ограничивает применимость теории Дебая — Гюккеля областью разбавленных растворов, в которых взаимодействие каждого иона с молекулами растворителя проявлено полностью и остается практически неизменным при дальнейшем уменьшении концентрации (разбавлении). [c.416]

    Первоначально теория кристаллического поля была применена для объяснения свойств кристаллических веществ и отсюда получила свое название. Однако она равно применима к любым системам геометрически правильно расположенных электрически взаимодействующих частиц, например к отдельному комплексу. [c.504]

    Здесь / 1 И р2 — коэффициенты векторных составляющих электрического взаимодействия частиц. Интеграл в правой части (5.55) рассчитывался численно при различных значениях 5а и Результаты расчетов приведены в табл. 5.2. При 5э=0 формула (5.55) переходит в (5.42). [c.95]

    Дисперсионное притяжение — это электрическое взаимодействие между мгновенными диполями, переменными по величине и [c.39]

    Информацию о структуре вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений (рентгеновских, электронных, нейтронных лучей), магнитных и электрических взаимодействий (магнитной восприимчивости и проницаемости, дипольных моментов и поляризации), механических, тепловых, электрических и других характеристик (плотности, вязкости, теплот фазовых переходов, теплот растворения, электропроводности и др.). [c.169]

    Координатами состояния системы называются параметры состояния, изменение которых служит признаком наличия определенного взаимодействия. Так, химическое взаимодействие всегда сопровождается изменением массы отдельных веществ, которые составляют систему, электрическое взаимодействие всегда сопровождается изменением электрического заряда. [c.227]


    Радиус ионов сильно влияет на их способность адсорбироваться. Из ионов одинаковой валентности максимальную адсорбционную способность проявляют ионы наибольшего радиуса. Причина этого явления, с одной стороны, заключается в большой поляризуемости таких ионов и, следовательно, их способности притягиваться поверхностью, состоящей из ионов или полярных молекул, с другой стороны, в меньшей гидратации ионов (чем больше радиус иона, тем меньше при одном и. том же заряде его гидратация). Гидратация вообще препятствует адсорбции ионов, так как наличие гидратной оболочки уменьшает электрическое взаимодействие. [c.146]

    Здесь значения представляют собой относительную концентрацию противоиона, необходимую для снижения электрокинетического потенциала до одного и того же значения, например 50 мВ. Как видно, этот ряд не дает каких-нибудь точных отношений. Этого, впрочем, и нельзя было ожидать, так как способность иона сжимать двойной электрический слой зависит не только от его валентности, определяющей электрическое взаимодействие со стенкой, но и от его размера, поляризуемости, способности гидратироваться и т. д. Мюллер, исходя из представлений Гуи и Чэпмена, чисто математическим путем показал, что способность противоионов понижать -потенциал действительно должна быстро расти с их валентностью, причем для случая плоской поверхности раздела его вычисления дали такой ряд  [c.180]

    Термодинамический метод позволяет изучить свойства реальных систем без рассмотрения составляющих их частиц и взаимодействий между ними. При этом все особенности внутреннего строения систем в суммарной форме охватываются термодинамическими величинами, которые подчиняются определенным термодинамическим закономерностям. Электрическое взаимодействие ионов приводит к более значи- [c.210]

    В том случае, когда ядерные уровни мессбауэровских атомов, рассеивающих у-кванты кристалла, имеют сверхтонкую структуру, обусловленную магнитными или электрическими взаимодействиями ядра с окружающими его электронами, разрешенные мессбауэровские переходы имеют особенность, состоящую в существовании угловых зависимостей интенсивности компонент мессбауэровского спектра относительно направления сверхтонких полей на ядре. В результате, если в рассеивающем объекте имеются ядра с разными направлениями градиента электрического поля или внутреннего эффективного поля, то ядерная амплитуда рассеяния для таких ядер будет различна, что может привести к появлению [c.230]

    Все силы в природе сводятся к элементарным силам, поэтому и силы химического сродства должны сводиться к электрическим, магнитным или гравитационным. Однако расчеты показывают, что по порядку величины магнитные и гравитационные силы слишком малы и их нельзя привлечь к объяснению химических сил. Таким образом, силы химического сродства так или иначе сводятся к силам электрического взаимодействия. [c.463]

    Строение молекул изучают физическим и химическим методами. Из физических свойств наибольшее значение имеют погло-ш,ение и отражение различных излучений (рентгеновские, электронные, нейтронные лучи), спектры поглощения и испускания широкого диапазона частот, магнитные и электрические взаимодействия (магнитная восприимчивость и проницаемость, электрические моменты диполей и поляризация), механические, тепловые, электрические и др. Для заключения о строении вещества сопоставляют информацию, полученную разными методами. Рассмотрим некоторые физические методы исследования. [c.63]

    При сближении двух мицелл, у которых сумма отрицательных зарядов равна сумме положительных, никакого электрического взаимодействия не происходит, пока ионные атмосферы обеих частичек не соприкоснутся. При дальнейшем сближении мицелл в результате [c.81]

    Дезактивирование возбужденного состояния может также происходить без излучения фотонов. Подобные безызлучательные переходы осуществляются при электрическом взаимодействии частицы с окружающей средой. Возвращение в основное состояние происходит непосредственно (процесс релаксации) или через промежуточные стадии. Безызлучательный переход возбужденных электронов с изменением спина может привести к неустойчивому промежуточному состоянию (триплетное состояние). После определенного времени пребывания в нем электроны возвращаются в основное невозбужденное состояние процесс этот сопровождается испусканием квантов более длинноволнового излучения (люминесценция). Если эмиссия света происходит только тогда, когда подводится энергия извне, говорят о флуо- [c.180]

    Резонансный или обменный интеграл, впервые введенный в квантовой механике, не имеет аналогов в классической физике. Однако он играет важную роль в теории химической связи. Он характеризует взаимодействие электронных орбиталей соседних атомов в молекуле. Расчеты показывают, что резонансный интеграл меньше нуля, т. е. отрицательная величина. В действительности между частицами имеется только электрическое взаимодействие. И только из-за принятого метода квантовомеханического расчета — МО в виде чПКАО — это единое взаимодействие разбивается на части кулоновский и обменный интегралы. [c.27]


    Большие возможности для анализа полимеров представляют методы молекулярной спектроскопии. Ведущее положение среди них занимает ИК-спектроскопия. Этим методом можно проводить исследование структуры как растворов, так и твердых полимеров. В спектре аддитивно проявляются характеристики элементарных звеньев, а не ЗЛ/ — 6N колебаний всей молекулы. Механические и электрические взаимодействия, происходящие в некоторых мономерных звеньях, расширяют полосы полимера. На спектрах полимеров с чередующимся расположением звеньев или со статистическим их распределением часто видны характеристические полосы, отражающие структуру участков их соединений это позволяет отличить сополимер от смеси гомополимеров. Так, волновое число СНа-спинового колебания зависит от окружения СНа-группы [c.417]

    Мы хотим особенно подчеркнуть, что природа любой химической связи (другими словами, причина возникновения той или иной связи) одинакова. Во всех случаях она обусловлена только электрическими взаимодействиями заряженных частиц, т. е. одновременным притяжением электронов (или одного электрона) к двум ядрам. [c.99]

    Теория Максвелла описывает излучение в терминах осциллирующих электрического и магнитного полей. Одно из этих полей (обычно электрическое) взаимодействует с электронами молекул химического соединения, поглощающего излучение. [c.28]

    Разделение заряда на компоненты, отвечающие специфической адсорбции и электрическому взаимодействию, целесообразно проводить при высоких значениях Ф,0 > ]. Однако в отсутствие специфической адсорбции, при ф+ = О и Ф = О, выражение для г)1 не обращается в нуль и, как справедливо отмечает Фрумкин [13], ионы первого слоя учитываются дважды (поскольку в диффузный слой Гун входят все ионы внешней обкладки, за исключением специфически адсорбированных. Поэтому при малых Фг целесообразнее пользоваться уравнением (XII. Па) вместо (XII. 12), как это и делается в настоящее время. [c.187]

    Сольватация ионов. Взаимодействие ионов с растворителем называют сольватацией ионов. Для водных растворов используется термин гидратация. Согласно сказанному сольватация включает в себя химическое и электрическое взаимодействие ионов с окружающими частицами. На примере галогенидов щелочных металлов можно видеть, что оба эти типа взаимодействий тесно взаимосвязаны, поэтому исследование каждого из них в отдельности затруднительно. В разбавленных растворах ионов на первый план нередко выступают электростатические силы. В концентрированных растворах обычно увеличивается влияние химических взаимодействий. [c.90]

    Развитие теории химического взаимодействия заключалось в разработке двух основных концепций, описывающих проявление электрического взаимодействия. [c.321]

    Следует выделить случай простого проявления этого взаимодействия в виде электростатического. В этом случае молекулы состоят из частей с противоположными знаками заряда (ионов). Этот вид связи (гетерополярная связь) проще, чем гомеополярная, при которой прочность молекулы определяется электрическим взаимодействием между движущимися электронами и атомными остатками и кинетической энергией электронов. [c.590]

    Допуская, что электрическое взаимодействие ионов деполяризатора с полем двойного электрического слоя много слабее специфического взаимодействия деполяризатора с адсорбатом, зто уравнение можно записать в виде  [c.249]

    Между коллоидными частицами действуют две взаимно противоположные силы — притяжения и отталкивания. Под действием силы притяжения происходит слипание частиц, совершающих броуновское движение. Эти силы носят преимущественно характер молекулярного взаимодействия (так называемые ван-дер-ваальсовы силы). Силы отталкивания определяются электрическим взаимодействием между ионами двойных электрических слоев, окружающих каждую коллоидную частицу. Эти силы препятствуют сближению частиц и их соединению, В зависимости от того, какие силы преобладают в данной системе, наблюдается или коагуляция (при перевесе сил притяжения), или более высокая устойчивость (если больше силы отталкивания). [c.324]

    Наиболее важной проблемой, с точки зрения аналитического применения метода, является природа процессов релаксации в жидкостях. При рассмотрении возможности передачи энергии путем спонтанной эмиссии, теплового излучения, электрических взаимодействий показано, что найденные экспериментально времена релаксации Т, и Та, например, протонов воды могут быть объяснены лишь при учете магнитных взаимодействий между частицами через локальные магнитные поля. Локальные поля будут флуктуировать, поскольку молекулы в растворах совершают трансляционные, вращательные и колебательные движения. Компонента создаваемого таким образом переменного поля с частотой, равной частоте резонанса, вызывает переходы между энергетическими уровнями изучаемого ядра совершенно так же, как и внешнее радиочастотное поле. Скорость процесса, приводящего к выравниванию энергии в спиновой системе и между спиновой системой и решеткой , будет зависеть от распределения частот и интенсивностей соответствующих молекулярных движений. При эюм следует учитывать следующие виды взаимодействий магнитное диполь-дипольное, переменное электронное экранирование внешнего магнитного поля, эле.ктрпческое квад-рупольное взаимодействие (эффективное для ядер с / > /2), спин-вращательное, спин-спиновое скалярное между ядрами с разными значениями I. [c.739]

    Эта проблема была детально обсуждена в связи с вопросом о природе связи в комплексных ионах металлов (53). Оказывается, что тип связи (ковалентной или ионной) в значительной мере зависит от силы электрических взаимодействий с комплексообра-йующими группами. [c.454]

    Теория Штерна. В 1924 г. Штерн предложил схему строения двойного электрического слоя, в которой он объединил схемы Гельмгольца — Перрена и Гуи — Чэпмена. Разрабатывая теорию двойного электрического слоя, Штерн исходил из двух предпосылок. Во-первых, он принял, что ионы имеют конечные, вполне определенные размеры и. следовательно, центры ионов не могут находиться к поверхности твердой фазы ближе, чем на расстоянии ионного радиуса. Вд-втррых, Штерн учел специфическое, не электрическое взаимодействие ионов с поверхностью твердой фазы. Это взаимодействие обусловлено наличием на некотором малом расстоянии от поверхности поля молекулярных (адсорбционных) сил. Как будет показано при обсуждении причин устойчивости и коагуляции коллоидных систем, молекулярные силы, действующие между телами, состоящими из множества молекул, вследствие своей аддитивности являются относительно дальнодействующими. [c.184]

    У незаряженных нейтронов не может быть электрического взаимодействия они останавливаются при столкновении с ядром подобно биллиардным щарам. Бомбардируемые атомы отскакивают со скоростью, достаточной для потери орбитальных электронов, и прохо-. дят через поглотитель в виде тяжелых заряженных частиц. Нейтроны могут быть также остановлены в результате поглощения атомными ядрами с сбразсванием новых, обычно радиоактивных, изотопов, но при облучении этот процесс, как правило, не имеет большого значения. Таким образом, все типы ионизирующего излучения приводят к образованию заряженных частиц большой энергии, которые в конечном итоге теряют ее, образуя ионизированные и возбужденные атомы или молекулы. Конечный результат такой ионизации и возбуждения зависит от природы химических связей в облученном материале. [c.157]

    Первоначально теория кристаллического поля была применена для объяснения свойств кристаллических веществ и отсюда получила свое название. Однако она равно применима к любым системам взаимно геометрически правильно расположенных электрически взаимодействующих частиц, например к отдельному комплексу. Теория кристаллического поля основана на предположении, что между комплексообразователем и лигандами осуществляется чисто электростатическое вз анмодействие (ионная связь). Однако в отличие от классических электростатических представлений (см. стр. 102) в теории кристаллического поля учитывается влияние электростатического поля лигандов на энергетическое состояние электронов комплексообразователя. [c.116]

    Атом водорода состоит из электрона и гораздо большего по массе протона, поэтому для упрощ,ения задачи целесообразно считать протон неподвижным. Электрическое взаимодействие между электроном и протоном описывается законом Кулона, из которого следует, что потенциальная энергия этой системы равна V = —(е 1г), где г — расстояние между двумя частицами. Именно эту потенциальную энергию необходимо подставить в уравнение (П1.2). Для поля со сферической симметрией, как это имеет место в данном случае, уравнение Шрёдингера проще решать в сферических, а не в декартовых координатах X, у, г. Сферические координаты г, ф показаны на рис. И1.1. С их использованием волновая функция записывается в виде произведения трех функций, каждая из которых зависит только от одного переменного  [c.164]

    В индуктивной ячейке исследуемый образец подвергается сложному воздействию магнитной и электрической компонент осциллирующего поля. Механизм электрического взаимодействия уже рассмотрен. Исследуем теперь другой идеализированный случай — чисто магнитное взаимодействие раствора электролита с высокочастотным полем индуктивной ячейки. [c.122]

    Устойчивость коллоидных систем определяется результатом действия между коллоидными частицами двух противоположно направленных сил. С одной стороны действуют силы притяжения или аттракционные силы, под влиянием которых происходит слипание частиц, совершающих броуновское движение с другой стороны проявляются силы отталкивания, препятствующие сближению частиц и их соединению. Силы притяжения носят характер молекулярного взаимодействия (ван-дер-ваальсовых сил) силы отталкивания определяются электрическим взаимодействием между ионами двойных электрических слоев, окружающих каждую частицу. [c.331]

    Этот пример, на наш взгляд, не усложняет картину природы химической связи, а, наоборот, лишь наглядно иллюстрирует, что природа любой химической связи остается одинаковой — электрические взаимодействия заряженных частиц, а также падчеркинает отмеченную выше условность классификации различных типов связей. [c.99]

    Если молекулы диэлектрика не являются идеальными сферами, а оказываются вытянутыми, т. е. имеют эллипсоидальную форму, то уравнение (У.7) не применимо, и для каждой из трех осей эллипсоида имеется свое время релаксации Тг или набор времен релаксации. Аналогичное явление происходит в случае многокомпонентного раствора, состоящего из молекул различного вида. Когда эти времена релаксации различаются значительно, то на дисперсионных кривых хорошо видны три области аномальной дисперсии. Если отдельные времена релаксации близки, что наблюдается наиболее часто, то дисперсионная облает оказывается размытой. Аналогичное явление наблюдается и для сферических молекул с жесткими диполями появляются межмолекуляриые электрические взаимодействия, или междипольные связи. [c.251]

    Химические реакции Я. Берцелиус объяснял электрическим взаимодействием противоположных зарядов различных атомов. Сродство обусловлено различной полярной интенсивностью атомов, зависящей от абсолютной величины заряда полюсов. Когда электроположительный атом сближается с электроотрицательным, то происходит нх соединение, причем необходимо, чтобы атомы были обращены друг к другу разнородными полюсами. Этим объясняется, почему химическая реакция, как правило, протекает в растворе. За счет электрических сил, обусловливаемых зарядами, образуются сложные молекулы из атомов, причем более прочные соединения дают атомы, резко противоположные в электрохимическом отношении. При этом происходит нейтрализация противоположных зарядов, но она почти всегда оказывается пеполпой. Получающиеся молекулы дво11ных соединений остаются заряженными, а потому е1це сохраняют способность к взаимодействию за счет остаточных электрохимических сил. [c.139]

    Опытные значения энергии и длины связи в Нг соответственна равны 457,67 кДж/моль и 0,074 нм. Расхождение между расчетными и экспериментальными данными 10% можно считать небольшим, если принять во внимание приближенный характер волновых функций (1У.8) и (1У.9), составленных из неизменных волловых функций атомов. Поэтому приведенный энергетический баланс позволяет сделать вывод природа ковалентной связи заключается в электрическом взаимодействии, осуществляемом в условиях квантовомеханической микросистемы. [c.93]

    Наряду с химическими существенную роль играют молекулярные силы, определяющие такие физические процессы, как конденсация молекулярных соединений, адсорбция их и др. Эти силы определяют в значительной степени отклонение уравнения состояния газов от идеального. Поэтому эти силы называют иногда ван-дер-ваальсовыми. Молекулярные силы отличаются от химических, прежде всего величиной (энергия молекулярного взаимодействия приблизительно на порядок меньше химического), универсальностью (любые атомные системы на больших расстояниях притягиваются) и отсутствием насыщения (молекулярные силы аддитивны). Как и химические силы, молекулярные в конечном счете происходят в результате электрического взаимодействия, как и в химических силах электрическое взаимодействие может проявиться как электростатическое и как электронное. [c.336]


Смотреть страницы где упоминается термин Электрические взаимодействия: [c.56]    [c.64]    [c.56]    [c.61]    [c.95]    [c.260]    [c.321]    [c.223]   
Явления переноса в водных растворах (1976) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте