Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовая теория химической связи

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    Квантовая теория химических связей [c.56]

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]

    Электронная теория объясняет зависимость теплового эффекта хемосорбции от величины адсорбции и ряд других закономерностей катализа. Однако без использования основных положений квантовой теории химической связи нельзя объяснить специфику взаимодействия катализатора с конкретной молекулой. Электронная теория катализа описывает состояние катализатора. Квантовая теория химической связи описывает взаимодействие молекул, осуществляющееся через взаимодействие атомов. Рассматривая взаимодействие молекулы субстрата с поверхностью катализатора, завершающееся возникновением химической связи, необходимо определить реакционные центры, т. е. атомы в молекуле и на поверхности катализатора, которые могут взаимодействовать. При определении реакционных центров и качественной оценке энергии взаимодействия между ними можно руководствоваться основными положениями метода возмущенных орбиталей (см. 214), положением о необходимости соответствия взаимодействующих орбиталей. [c.659]


    Проблема гетерогенно-каталитического акта является проблемой химического взаимодействия между реагирующими молекулами и взаимодействия их с поверхностью твердой фазы. Поэтому вопросы гетерогенного катализа должны решаться на основе квантовой теории химической связи и, в частности, на базе теории молекулярных орбиталей. Одновременно необходимо изучать свойства молекул, находящихся на поверхности твердой фазы. Это требует привлечения современных представлений о строении металлов и полупроводников. [c.660]

    Вследствие того что молекула представляет собой систему нескольких ядер и электронов, точное решение уравнения Шредингера для нее невозможно. Поэтому в квантовой теории химической связи, как и в теории многоэлектронного атома, используют различные приближения, количество которых возрастает со сложностью задачи. [c.27]

    Одним из важных результатов квантовой теории химической связи является объяснение пространственного строения органических молекул. Известно, что расположение валентности углерода в различных рядах соединений различно. Так, в насыщенных углеводородах (и их производных) валентности углерода направлены к вершинам тетраэдра. В этиленовом ряду и в ароматических соединениях наблюдается не тетраэдрическое, а тригональное направление валентности. Три одинарные связи углерода расположены в одной плоскости под углом 120° друг к другу, поэтому молекулы бензола, нафталина и других ароматических соединений являются плоскими. Молекула ацетилена линейна. [c.479]

    В первых работах, посвященных квантовой теории химической связи, рассматривалось электростатическое взаимодействие с учетом электронного облака, отвечаю-326 [c.324]

    ОСНОВЫ КВАНТОВЫХ ТЕОРИЙ ХИМИЧЕСКОЙ СВЯЗИ [c.227]

    Нашей задачей является настолько подробное ознакомление читателя с подобными сопоставлениями, чтобы он смог не только проводить аналогичные сопоставления, но и самостоятельно развивать новые подходы. При сравнении теоретических и экспериментальных величин основное внимание уделяется, с одной стороны, качественному рассмотрению исследуемых свойств и процессов и, с другой стороны, количественной интерпретации экспериментальных данных. Такой подход необходим для обобщения полученных сведений, а также для вывода на основе обширных сводок экспериментальных данных эмпирических закономерностей, куда входят величины, получаемые из квантовохимических расчетов. Подобные закономерности могут использоваться также в качестве интерполяционных формул, позволяющих оценить значения экспериментальных характеристик для еще не синтезированных соединений, свойства которых интересны по той или иной причине. При этом открывается очень заманчивая возможность — использовать квантовую теорию химической связи не только для интерпретации данных, но и для их предсказания. [c.10]

    Это противоречие было разрешено квантовой теорией химической связи, которая, исходя из основных положений электронной теории, дала возможность объяснить на примере молекулы водорода (Гейтлер, Лондон, 1927) образование ковалентной связи и рассчитать энергию образования этой молекулы. В дальнейшем успешные расчеты были произведены и для некоторых других простейших молекул. [c.31]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]


    Это противоречие было разрешено с возникновением квантовой теории химической связи, когда, исходя из основных положений электронной теории, оказалось возможным (1927) объяснить на примере молекулы водорода образование ковалентной [c.98]

    Из сказанного выше следует, что подлинное развитие теории химической связи стало возможным лишь после появления квантовой механики. Квантовая теория химической связи является, в сущности, разделом прикладной квантовой механики и вместе с теорией атома и твердого тела образует так называемую физику низких энергий (в отличие от физики высоких энергий, включающей теорию ядра и элементарных частиц). [c.7]

    Бурное развитие электронной и квантовой теории химической связи со времени выхода первого издания в 1940 г, потребовало коренной переработки всего содержания книги. Ввиду неблагоприятных условий военных и послевоенных лет это удалось выполнить лишь теперь. [c.9]

    Поразительно, что еще в XIX в. химики сумели ввести такие понятия о структуре вещества, которые хорошо согласуются с современными представлениями, основанными на квантовой теории химической связи и на непосредственном определении структуры соединений методами дифракции электронов или нейтронов либо при помощи рентгеноструктурного анализа. Еще более поразительно то, что в появившейся в 1916 г. теории Косселя и Льюиса решающая роль в развитии представлений о возникновении химической связи отводилась электронам. (Напомним, что электрон был открыт Томсоном лишь за 19 лет до этого и что всего пятью годами раньше Резерфорд предложил планетарную модель атома.) Основными понятиями этой весьма успешной и продуктивной теории были электровалентность и ковалентность— качественные представления, которые до настоящего времени хорошо служат химии. На указанных представлениях о химической связи основана теория мезомерного и индуктивного эффектов, которая успешно применялась для объяснения данных, полученных в органической и неорганической химии (Робинсон, Ингольд, Арндт, Эйстерт). Несомненно также важное значение работ выдающихся ученых прошлого Кекуле, Купера, Бутлерова, Вернера и (по пространственному строению) Ле Бела и Вант Гоффа. [c.11]


Смотреть страницы где упоминается термин Квантовая теория химической связи: [c.522]    [c.576]    [c.45]    [c.522]    [c.576]    [c.54]    [c.153]    [c.312]   
Смотреть главы в:

Валентность и строение молекул -> Квантовая теория химической связи


Физическая химия Том 1 Издание 5 (1944) -- [ c.206 , c.216 , c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Введение в молекулярную спектроскопию Элементарные сведения о квантово-механической теории строения атома, молекулы и химической связи

Гейтлер Квантовая теория и гомеополярная химическая связ

Квантово-механическая теория химической связи

Квантово-химическое толкование представлений о типах связей СС Развитие положения теории химического строения о взаимном влиянии непосредственно не связанных атомов

Основы квантовых теорий химической связи

Связь теория

Связь теория квантовая

Теория квантовая

Теория квантово-химическая

Теория химическои связи

Теория химической связи

Химическая связь

Химическая связь связь

Химическая теория

Химический связь Связь химическая

Элементы квантовой химии. Теория химической связи, метод МО ЛКАО



© 2025 chem21.info Реклама на сайте