Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значения — (G — Но)Т и для графита и некоторых газов

    Имеются основания предполагать, что адсорбция на активированном или графитизированном угле, а также на графите должна происходить главным образом на базисных плоскостях. Поэтому поверхность этих веществ должна, по-видимому, иметь-довольно однородный характер. Это подтверждается полученными значениями теплот адсорбции физически адсорбированных молекул. Так, теплоты адсорбции многих газов, включая аргон, азот, кислород и ряд углеводородов, имеют практически постоянные значения [39б-е]. В некоторых случаях теплота адсорбции слегка уменьшается с увеличением степени заполнения. Гольдман и Поляни [39е, 175], в частности, указывают,, что теплоты адсорбции хлористого этила на угле при увеличении 0 от 0,09 до 0,60 падают с 12,5 до 9,5 ккал/моль. Теплоты десорбции н-пентана [39г], сероуглерода 39д] и диэтилового эфира [39е] на том же угле обнаруживают подобную же зависимость от степени заполнения. Следовательно, можно сделать вывод, что в аналогичных случаях уменьшение теплоты адсорбции вызывается неоднородностью поверхности. [c.111]


    Имевшее место увеличение состава некоторых компонентов не связано с увеличением их объема, так как образец не имел до этого сорбированных компонентов и, следовательно, они не могли увеличить свой вес иа счет десорбции. Здесь увеличение состава связано с относительно разным уменьшением веса компонентов в связи с сорбцией 1[х породой. Несмотря на то, что все компоненты природного газа сорбируются, алгебраическая сумма изменения состава компонентов должна быть равной нулю (см. графу 5). Поэтому наиболее активные компоненты здесь имеют отрицательное значение, а наименее активные — положительное. [c.17]

    Таким образом, механизм дуги можно представить себе следующим. Из катода в результате высокой степени его разогрева (термоэлектронная эмиссия) или наличия около его поверхности больших напряженностей электрического поля (10 —10 в см — автоэлектронная эмиссия) вырывается поток электронов. Первый случай имеет место для материалов катода с высокой температурой плавления и испарения металла (уголь, графит, вольфрам, молибден), благодаря чему температура на их поверхности может достигать в катодных пятнах значений 2 500—3 000° С и выше, когда начинается заметная термоэлектронная эмиссия. Второй случай соответствует материалам с низкой температурой кипения и испарения (ртуть, титан, медь). В области катодного падения поток электронов разгоняется настолько, что за ее пределами происходит интенсивная ионизация частиц газа в дуговом промежутке, причем здесь, по-видимому, весьма существенна роль ступенчатой ионизации. Образовавшиеся положительные ионы под действием поля направляются к катоду и разогревают его вторичные и первичные электроны направляются через столб дуги в направлении анода. На их пути происходят новые соударения (главным образом термическая ионизация) и образование новых заряженных частиц, что компенсирует их исчезновение в более холодных частях столба путем рекомбинации и диффузии. При попадании на анод отрицательные частицы нейтрализуются, выбивая из него некоторое количество положительных ионов, устремляющихся через столб дуги к катоду. Плазма столба в целом нейтральна, т. е. концентрация положительных и отрицательных частиц одинакова, но из-за того, что подвижность электронов по [c.29]

    Искусственный графит является одним из широко применяемых бескислородных огнеупорных материалов. В связи с развитием некоторых новых отраслей техники значение графита возросло настолько, что его можно рассматривать как новый конструкционный материал для работы при высоких температурах. Применение графита обусловлено высокой температурой сублимации, хорошей термостойкостью, достаточно высокой теплотой испарения, наибольшей среди других материалов удельной прочностью при высоких температурах, удовлетворительной эрозионной стойкостью в потоке газа при температуре до 3000 К. Графит химически инертен в нейтральной и восстановительной атмосферах. Существенным недостатком графита является низкая стойкость против окисления и эрозионного воздействия твердых частиц. [c.7]


    Аналогичным образом в статистической физике полимеров рассматриваются их решеточные модели, в которых молекулярные графы вложены в регулярную пространственную решетку (рис. 1.24). При этом вершины и ребра этих графов могут располагаться соответственно только в узлах и связях решетки, координационное число / которой совпадает с функциональностью мономера. К несомненным достоинствам таких решетчатых полимерных моделей относится то, что они учитывают цинлообразование и, кроме того, позволяют естественным образом (как в решетчатом газе) включить в рассмотрение физические взаимодействия между мономерными звеньями. Эти модели, однако, не применимы для расчета некоторых важных характеристик полимерной системы (нанример, конверсии в точке гелеобразования р ), значения которых зависят кроме / также и от геометрии решетки. Следует помнить, что решеточные модели полимеров претендуют на описание лишь асимп- [c.178]

    Следовательно, удельная поверхность 5 вычисляется из значений ко только при условии, что можно оценить интеграл /. Для такой оценки явно необходимо выразить и в виде функции от г, т. е. требуется точное представление о форме потенциальной кривой (см. рис. 7). Однако кривые подобного вида до сих пор были рассчитаны только для относительно простых систем, например для атомов аргона, адсорбированных на графите, и только для открытых поверхностей или для твердых тел с весьма широкими порами. Более того, результаты расчетов удельной поверхности твердых тел заметным образом зависят от выбранной формы закона взаимодействия и от природы адсорбата, как это следует из работы Баркера и Эверета [20]. Эти авторы предложили улучшенную модель, в которой адсорбированная фаза рассматривается как двумерный газ (ом. гл. 5), а силы взаимодействия между адсорбированными молекулами, в расчет не принимаются. Этим путем они смогли получить значения удельной поверхности, которые близки (а одно, столбец б табл, 51, очень близко) к значениям, рассчитанным из размеров частиц, определенных по методу электронной микроскопии. Однако вычислительная техника весьма трудоемка, а некоторые исходные параметры, необходимые для вычисления интеграла,. новозможно полностью оценить независимым способом. [c.250]


Смотреть страницы где упоминается термин Значения — (G — Но)Т и для графита и некоторых газов: [c.111]   
Смотреть главы в:

Примеры и задачи по химической термодинамике -> Значения — (G — Но)Т и для графита и некоторых газов




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы



© 2025 chem21.info Реклама на сайте