Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

К механизму структурообразования в белковых системах

    Свертывание белковой цепи не может быть объектом рассмотрения классической равновесной термодинамики, поскольку последняя оперирует только усредненными характеристиками стохастических систем, обратимыми флуктуациями и функциями состояния, а поэтому ограничена изучением макроскопических систем с чисто статистическим, полностью неупорядоченным движением микроскопических частиц, взаимодействующих неспецифическим образом только в момент упругих соударений. Равновесная термодинамика в состоянии анализировать коллективное поведение множества частиц, не вдаваясь при этом в детали их внутреннего строения и не конкретизируя механизм равновесного процесса. Особенно важно отметить то обстоятельство, что для классической термодинамики все случайные флуктуации системы неустойчивы, обратимы и, следовательно, не могут оказывать заметного, а тем более конструктивного, воздействия на протекающие процессы. Все явления, самопроизвольно протекающие в изолированной системе, направлены, согласно термодинамике равновесных процессов, на достижение однородной системы во всех возможных отношениях. Сборка белка не отвечает основным положениям классической статистической физики эргодической гипотезе и Н-теореме Больцмана, принципу Больцмана о мультипликативности термодинамической вероятности и закону о равномерном распределении энергии по всем степеням свободы. Следование системой больцмановскому распределению вероятностей и больцмановскому принципу порядка, не содержащих механизма структурообразования из беспорядка, исключает саму возможность спонтанной сборки трехмерной структуры белка. Кроме того, невозможен перебор всех равноценных с точки зрения равновесной термодинамики и статистической физики конформационных вариантов. Даже у низкомолекулярных белков (менее 100 аминокислотных остатков в цепи) он занял бы не менее лет. В действительности же продолжительность процесса исчисляется секундами. Величина порядка 10 ° лет может служить своеобразной количественной мерой удаленности предложенных в литературе равновесных термодинамических моделей от реального механизма свертывания природной аминокислотной последовательности. [c.90]


    При исследовании гелей белков и полимеров уделялось значительное внимание изучению физико-химических и механических свойств уже сформированных структур и практически не рассматривались процессы зарождения и формирования пространственных структур, в частности образования новых дисперсных фаз. Механизм структурообразования в белковых и полимерных системах до сих пор недостаточно изучен с этой точки зрения. Кроме того, констатирование фазового расслоения в системе не является признаком структурообразования, так как выделение новой фазы не обязательно приводит к возникновению прочной пространственной структуры. [c.65]

    Из рассмотрения закономерностей структурообразования в водно-белковых системах следует, что структурообразование в белковых системах принципиально определяется теми же законами, как и в системах, образованных низкомолекулярными веществами, однако вопрос о механизме структурообразования и управления свойствами возникающих структур мон<ет быть решен только с учетом сложности и специфичности макромолекул белков. [c.147]

    Отсутствие серьезного прогресса вплоть до начала 1980-х годов можно было объяснить неразработанностью теоретических основ изучения процессов структурообразования, протекающих в открытых системах вдали от положения равновесия речь идет о целой области естественнонаучных знаний - нелинейной неравновесной термодинамики или физики статистико-детерминистических процессов. Немалую роль, по-видимому, играл и психологический барьер, возникающий всякий раз при встрече с уникальным, не имеющим аналогий и, следовательно, требующим нетрадиционного подхода, явлением, каким, безусловно, является спонтанное возникновение трехмерной структуры белка. Подход, до последнего времени используемый в изучении механизма свертывания, имеет следующие характерные черты принципиального порядка. [c.82]

    Для исследования механизма структурообразования в водных системах желатины, яичного альбумина, казеина изучалась кинетика роста прочности пространственной структуры во времени и способность ее к обратимому восстановлению после разрушения [17], а также конформационные изменения молекул белка в этих условиях [18]. В работе использовались следующие методы для измерения прочности — метод тангенциально смещаемой пластинки Вейлера — Ребиндера [19], для исследования конформационных превращений макромолекул — поляриметрические методы (оптическое вращение и дисперсия оптического вращения). Для выяснения фазовых превращений в процессе гелеобразования желатины применялся макрокалориметр типа Кальве [20]. [c.354]


    Обсуждаемая модельная система свертывания белковой цепи не отвечает основным положениям классической статистической физики эргодической гипотезе и Н-теореме, принципу Больцмана о мультипликативности термодинамической вероятности, а также закону о равном распределении энергии по всем степеням свободы. Следование системой больцмановскому распределению вероятностей и больцма-новскому принципу порядка лишено механизма структурообразования из беспорядка, и поэтому исключает саму возможность спонтанной сборки трехмерной структуры белка. Кроме того, практически невозможен перебор всех равноценных с точки зрения статистической физики конформационных вариантов (микроскопических состояний). Даже для низкомолекулярных белков (< 100 аминокислотных остатков в цепи) он занял бы около 10 ° лет. В действительности же продолжительность процесса исчисляется долями секунд и секундами. Таким образом, величина порядка 10 лет может служеть своеобразной коли- [c.461]


Смотреть главы в:

Структурообразование в белковых системах -> К механизму структурообразования в белковых системах




ПОИСК





Смотрите так же термины и статьи:

Структурообразование



© 2025 chem21.info Реклама на сайте