Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы неустойчивость

    Различают истинные и коллоидные растворы. В первых вещества распадаются на частицы, равные размерам молекул или ионов (10 —10 см). Коллоидные системы лежат между истинными растворами и механической смесью это микрогетерогенные высокодисперсные системы (радиус частиц 10 —10 см) и грубодисперсные системы (радиус частиц 10 —10 см). Они агрегативно неустойчивы, так как без специальной (дополнительной) стабилизации коллоидные частицы объединяются и оседают. [c.130]


    Присадки, называемые диспергентами, выполняют в окисляющейся системе (топливо — продукты его окисления) в основном функции защитных коллоидов или пеп-тизаторов. Защитными коллоидами для растворов в углеводородной среде могут служить все поверхностно-активные вещества дифильной структуры [13] спирты, жирные кислоты и их соли, фенолы и их соли, амины и др. Действие защитных коллоидов усиливается с удлинением углеводородной цепи при полярной группе. Защитное действие лиофильных коллоидов по отношению к лиофобным объясняется адсорбционным взаимодействием их частиц. Концентрация добавляемого защитного коллоида имеет важное значение. При недостаточной концентрации или малой степени его дисперсности взаимодействие лиофильного и лиофобного коллоидов может привести к обратному результату — образованию крупных лиофобных агрегатов. Это придает неустойчивость коллоидной системе и повышенную чувствительность к внешним воздействиям (сенсибилизация), которая может, в свою очередь, привести к коагуляции и осаждению коллоидных частиц. [c.139]

    Термодинамически неустойчивые системы могут быть до некоторых размеров частиц дисперсной фазы кинетически устойчивы. Потеря кинетической устойчивости приводит практически к разрушению коллоидной системы и превращению ее в качественно другую систему, например, грубую дисперсию. Возможно регулировать агрегативную и кинетическую устойчивость системы, воздействуя на процесс коагуляции частиц дисперсной фазы, например созданием на их поверхности защитных слоев путем введения различных добавок. Устойчивость коллоидных систем может изменятся также за счет формирования вокруг дисперсных частиц сольватных слоев из молекул растворителя. [c.24]

    Как правило, микрогетерогенные системы седиментационно неустойчивы. В этой связи в них нельзя наблюдать, как в коллоидных системах, диффузионные и осмотические явления. Однако по другим свойствам микрогетерогенные системы во многом сходны с коллоидными. Например, они могут быть получены диспергационным и конденсационным методами, отличаются развитой поверхностью раздела фаз, обладающей значительной сорбционной активностью. [c.26]

    В принципе все коллоидные системы с термодинамической точки зрения являются неустойчивыми практически можно считать их относительно устойчивыми, так как процессы, нарушающие устойчивость, могут в различных коллоидных системах протекать с неодинаковой скоростью. [c.324]

    При разбавлении коллоидной системы технической водой, содержащей электролиты, коагуляция системы может произойти и под действием электролитов. При выпаривании протекает процесс концентрирования золя, что приводит систему в неустойчивое состояние. [c.89]


    Следует, однако, отметить, что твердые коллоидные системы не обладают всеми перечисленными выше типичными коллоидными свойствами. Так, все твердые коллоидные системы в обычных условиях агрегативно устойчивы. Это объясняется только огромной вязкостью этих систем, не позволяющей передвигаться частицам растворенного вещества и образовывать, более крупные агрегаты в результате слипания. При плавлении же этих систем может проявляться их агрегативная неустойчивость. Металлические сплавы не обладают также опалесценцией. Но это обусловливается лишь непрозрачностью металла. Другие твердые коллоидные системы, дисперсионная среда которых прозрачна (например, рубиновое стекло, опал), заметно опалесцируют. Недаром явление опалесценции получило свое название от минерала опала. , [c.13]

    Мы уже говорили о том, что агрегативная неустойчивость — специфическая особенность коллоидных систем. Это свойство коллоидных систем имеет большое практическое значение. Не будет преувеличением сказать, что основной задачей технолога производственного процесса, в котором имеют место коллоидные системы, является либо поддержание агрегативной устойчивости системы, либо, наоборот, обеспечение известных условий коагуляции. [c.18]

    Агрегативная неустойчивость является центральной проблемой коллоидной химии, и уже в начале курса следует хотя бы в самом общем виде рассмотреть, какие причины обусловливают агрегативную неустойчивость коллоидных систем и почему многие коллоидные системы, несмотря на их принципиальную агрегативную неустойчивость, существуют весьма продолжительное время. Причины неустойчивости коллоидных систем могут быть объяснены с двух точек зрения — термодинамической и кинетической. [c.18]

    Поскольку коллоидные системы, обладающие большой удельной поверхностью и большой свободной энергией, являются принципиально неравновесными системами, к ним неприложимо известное правило фаз. Такие системы, очевидно, всегда будут стремиться к равновесному состоянию, отвечающему разделению системы на две сплошные фазы с минимальной межфазной поверхностью, хотя это равновесие практически может никогда и не наступить. Термодинамическое толкование причин устойчивости или неустойчивости коллоидных систем чрезвычайно просто. Однако, как и всякая термодинамическая трактовка, это объяснение формально, т. е. она не раскрывает сущности свойства агрегативной неустойчивости. Кроме того, термодинамика не устанавливает связи между свободной энергией системы и тем, как долго система может пребывать в неравновесном состоянии. Поэтому более полным в данном случае является объяснение агрегативной неустойчивости или устойчивости коллоидных систем с позиций физической кинетики.  [c.19]

    Таким образом, относительная устойчивость коллоидной системы определяется тем, достаточно ли велики силы отталкивания, чтобы воспрепятствовать сближению частиц на близкие расстояния. Понятно, что такое объяснение не противоречит принципиальной неустойчивости огромного большинства коллоидных систем, поскольку при непосредственной близости поверхностей частиц силы сцепления, как правило, больше сил отталкивания и двум отдельным частицам энергетически обычно выгодней образовать агрегат. В дальнейшем мы увидим, что имеется много способов уменьшения сил отталкивания, и в частности, одним из таких способов является введение в систему электролитов. [c.20]

    Грубодисперсные системы (например, пыль или суспензия песка в воде) седиментационно неустойчивы и оседают, так как частицы их тяжелы и практически не могут осуществлять теплового (броуновского) движения. Наоборот, высокодисперсные системы (газы, истинные растворы) обладают высокой кинетической устойчивостью, так как им свойственны тепловое движение и способность к диффузии. Коллоидные системы (аэрозоли, лиозоли) по устойчивости занимают промежуточное положение. [c.69]

    Некоторые исследователи объясняют коагуляцию золя при концентрировании увеличением числа столкновений частиц друг с другом. Однако это объяснение мало соответствует тому факту, что золи проявляют способность к спонтанной коагуляции только тогда, когда их концентрация превышает определенное критическое значение. Можно полагать, что неустойчивость коллоидной системы выще определенной концентрации объясняется увеличением в единице объема, содержания не только чужеродного электролита, но и самих коллоидных частиц, которые должны рассматриваться как поливалентные ионы, а также и содержания соответствующих противоионов. Подобное допущение вполне вероятно. [c.311]

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Коллоидные системы термодинамически неустойчивы, обладают высокой адсорбционной способностью и самопроизвольно разрушаются путем агрегирования частиц. В результате уменьшается общая поверхность и поверхностный изобарно-изотермический потенциал. Стремление коллоидных систем к слипанию называется агрегативной неустойчивостью. Препятствием для агрегации служат защитные, стабилизирующие слои на поверхности частиц, возникающие в результате адсорбции. [c.262]

    Агрегативная устойчивость дисперсных систем весьма различна. Одни системы могут существовать секунды после их образования, другие очень долговечны. Наиболее неустойчивыми по своей природе являются гидрофобные коллоидные системы, для которых характерно слабое взаимодействие между частицами дисперсной фазы и дисперсионной средой. Для придания стабильности таким системам необходимо присутствие тех или иных факторов устойчивости. [c.425]

    Приведите анализ потенциальной кривой для дву.х частиц гидрозоля. Какие силы преобладают при сближении частиц устойчивой дисперсной системы агрегативно неустойчивой коллоидной системы  [c.440]

    Высокодисперсные системы с большой удельной поверхностью представляют собой предмет рассмотрения коллоидной химии. Поэтому поверхностные явления играют большую роль во всех процессах, протекающих в коллоидных системах. Так, в частности, многие коллоиды термодинамически неустойчивы. Коагуляции их препятствуют находящиеся на коллоидных частицах слои (ионные или молекулярные в зависимости от природы коллоидов). Известно, например, что мыло стабилизует эмульсии жира в воде. Молекулы солей жирных кислот адсорбируются при этом на поверхности частиц жира и мешают им коагулировать. [c.294]

    Коллоидные системы, характеризующиеся слабым взаимодействием дисперсной фазы и дисперсионной среды (лиофобные коллоиды), отличаются принципиальной неустойчивостью и склонностью к уменьшению дисперсности со временем. Скорость процесса укрупнения частиц колеблется в очень широких пределах. Известны, например, золи золота, сохраняющиеся без видимых изменений десятки лет, и такие же золи, разрушающиеся в течение нескольких секунд при введении определенных веществ. Между термодинамической неравновесностью золей и скоростью их разрушения нет определенной зависимости. Характер временных изменений в системе можно установить только, изучая механизм укрупнения частиц в золях. [c.104]

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]

    Как уже указывалось, коллоидные системы вследствие их большой удельной поверхности являются системами термодинамически неравновесными и агрегативно неустойчивыми. Существует два понятия кинетическая и агрегативная неустойчивость дисперсных систем. [c.79]

    Растворы, как правило, термодинамически устойчивы, и их свойства не зависят от предыду цей истории, тогда как коллоидные системы очень часто неустойчивы и обнаруживают тенденцию к самопроизвол ьному изменению. [c.158]

    Лиофильные эмульсии образуются самопроизвольно это — термодинамически устойчивые системы. Лиофобные эмульсин (большая часть эмульсий) возникают при механическом, акустическом или электрическом воздействии на смеп1иваемые жидкости либо при выделении новой капельно-жидкой фазы из пересыщенных растворов. Это термодинамически неустойчивые системы, которые могут длительно существовать без механического воздействия только в присутствии эмульгаторов. Лиофильные эмульсин — высокодисперсные (коллоидные) системы, размер их капель не превышает Ю- мм. Лиофобные эмульсии — грубодисперсные системы, размер капель которых лежит в пределах 10- —10" мм склонны к осаждению, приводящему к разделению жидкостей па отдельные слои. Размер капель эмульсии зависит от условий ее получения и физических свойств эмульгаторов. [c.144]

    Вьпие ( 18 этого раздела) было указано, что все гетерогенные дпсперсиыс системы являются неустойчивыми. В агрегативном отношении особенно неустойчивыми являются тонкодисперсные, т. е. коллоидные системы. Одиако на практике встречаются относительные устойчивые коллоидные системы, что обусловлено наличием электрического заряда у коллоидных частиц. Будучи одноименно заряжены, коллоидные частицы при сближении отталкиваются друг от друга и, следовательно, коагуляция в такой коллоидной системе не происходит. [c.194]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Еще основатель коллоидной химии Грэм предположил, что особые свойства коллоидов обусловлены нх полимерным строением. Первыми объектами изучения в коллоидной хммии были растворы высокомолекулярных соединений желатины, гуммиарабика, крахмала и др. Хотя в то время не удавалось определить строение коллоидных част1 ц, принадлежность растворов этих соедщгенпй к коллоидным системам не подвергалась сомнению. Тогда считали, что все коллоидные системы термодинамически неустойчивы и соответственно эта особенность распространялась на растворы ВМС. Дальнейшими исследованиями были установлены отличия растворов ВМС от других коллоидных систем. Так, растворам ВМС [c.309]

    Несмотря на изменения представлений о строении макро моле-кул, растворы полимеров всегда рассматривались как коллоидные системы. Одиако в 1937 г. их принадлел ность к коллопдам была взята под сомнение. В. А. Каргиным с сотр. в 1937 г. было установлено, что растворы полимеров являются термодинамически устойчивыми системами. Этот факт явился большим вкладом в науку о полимерах и о коллоидных системах вообще. В то же время, считая термодинамическую неустойчивость принципиальной особенностью коллоидных систем, авторы сделали вывод о том, что растворы полимеров являются истинными растворами, а не коллоидными. В связи с этим некоторые ученые даже предлагали выделить физическую химию полимеров вообще из коллоидной химии. [c.310]

    Как и лиофобные коллоидные системы, грубодисиерспые системы являются агрегативно неустойчивыми и нуи<даются в стабилизации. [c.127]

    Из ЭТОЙ таблицы видно, что коллоидно-дисперсные системы в отличие от истинных растворов являются аг-регативно неустойчивыми. Размеры их дисперсных частиц могут изменяться как самопроизвольно, так и под влиянием внешних факторов. Одной из причин неустойчивости коллоидных растворов является их гетерогенность. Коллоидные системы обладают громадной суммарной по-вехностью и, следовательно, большой свободной энергией. В силу второго начала термодинамики они стремятся к равновесному состоянию, характеризующемуся разделением системы на две фазы, имеющие минимальные меж-фазные поверхности и минимальную свободную поверх- [c.146]

    Коллоидные системы обладают высокоразвитой по-перхностью раздела и, следовательно, большим избытком поверхностной энергии. Поэтому они термодинамически неустойчивы и имеют постоянную тенденцию к самопроизвольному уменьшению межфазной энергии. Это уменьшение в большинстве случаев происходит за счет сокращения суммарной поверхности частиц дисперсной фазы золей. Другими словами, если мицеллы золя приходят в тесное соприкосновение между собой, они соединяются в более крупные агрегаты. Этот процесс укрупнения коллоидных частиц в золях, происходящий под влиянием внешних воздействий, носит название коагуляции. [c.226]

    Из этой таблицы следует, что коллоидно-дисперсные системы в отличие от истинных растворов сами по себе агрегативно неустойчивы. Размеры их дисперсных частиц могут изменяться как самопроизвольно, так и под влиянием внешних факторов. Одной из причин неустойчивости коллоидных растворов является их гетерогенность. Обладая громадной суммарной поверхностью, следовательно, большой свободной энергией, коллоидные системы согласно второму началу термодинамики стремятся к равновесному состояипю, характеризующемуся разделением системы ка две фазы, имеющие минимальные межфазовые ПОВерХНОСТИ И МИНИМЭЛЬ-ную свободную поверхностную энергию. [c.277]

    Коллоидные системы, как известно, обладают высокоразвитой поверхностью раздела и большим избытком свободной поверхностной энергии. Поэтому эти системы термодинамически неустойчивы и имеют тенденцию к самопроизвольному уменьшению межфазной энергии. Это в большинстве случаев происходит за счет уменьшения суммарной поверхности частиц дисперсной фазы золей. Если в силу создавшихся условий мицеллы золя приходят в тесное соприкосновение между собой, они соединяются в более крупные агрегаты. Это процесс коагуляции (от латинского oagulatio — свертывание, створаживание). [c.367]

    В отличие от истинных растворов, являющихся вполне устойчивыми (стабильными) системами, коллоидные растворы агрегативно неустойчивы (лабильны), т. е. коллоидно растворен--ное вещество способно сравнительно легко выделяться из раствора (коагулировать) под влиянием незначительных внешних воздействий. В результате в колло1 дном растворе образуется осадок (коагулят, коагулюм), представляющий собой агрегаты из слипшихся первичных частиц. Существенно, что агрегативная неустойчивость коллоидных систем обычно проявляется в тем,большей степени, чем больше их концентрадия. Поэтому очень часто типичные коллоидные системы невозможно получить достаточно концентрированными. [c.11]

    Обычные коллоидные системы в отличие от молекулярных растворов вследствие наличия пове )хности раздела частиц с дисперсионной средой гетерогенны, большей частью термодинамически неравновесны и агрегативно неустойчивы. Именно поэтому проблема устойчивости. коллоидных систем является центральной проблемой коллоидной химии, а коагуляция составляет наиболее важный механизм перехода к более устойчивому состоянию для всех типичных коллоидных систем. [c.259]

    Коллоидные системы, кроме растворов ВМС, представляют собой термодинамически неустойчивые системы. Такие растворы не могут образоваться самопроизвольно, так как диспергирование твердого тела сопровождается увеличением поверхностной энергии. При дроблении твердого тела изменение внутренней энергии больше нуля ДС/ х >0. Изменение внутренней энергии, связанное с сольватацией, А С/а отрицательно А11г < 0 для коллоидов величина обычно незначитель- [c.415]

    Устойчивость и коагуляция коллоидных систем. В термодинамически неустойчивых коллоидных системах непрерывно протекают самопроизвольные процессы, ведущие к укрупнению частиц. Укрупнение частиц возможно двумя путями I) за счет перекристаллизации 2) за счет слипания частиц в более крупные агрегаты (коагуляции или коалесцеиции). Перекристаллизация идет медленно. Коагуляция протекает быстрее. Ее можно вызвать понижением температуры, кипячением, встряхиванием. Все электролиты способны коагулировать коллоидные системы в определенных концентрациях. Необходима минимальная концентрация электролита (порог коагуляции), вызывающая коагуляцию через определенное время. Коагулирующим является ион, по знаку противоположный заряду частицы чем выше его заряд, тем сильнее коагулирующее действие (правило Шульце—Гарди). Выпадающий коагулят всегда содержит коагулирующие ионы. Соотношение порогов коагуляции и коагулирующих ионов обратно пропорционально соотношению их зарядов в шестой степени (2 ). [c.266]

    Выделение систем с определенным размером частиц в особый класс коллоидных систем не является чисто формальным. Высокая дисперсность придает веществам новые качественные признаки повышенную реакционную способность и растворимость, интенсивность окраски, светорассеяние и т. п. Резкое изменение свойств вещества с повышением дисперсности связано с быстрым увеличением суммарной поверхности раздела между частицами и средой. Большая поверхность раздела создает в коллоидных системах большой запас поверхностной энергии Гиббса, который делает коллоидные системы термодинамически неустойчивыми, чрезвычайно реакционноспособными. В этих системах легко протекают самопроизвольные процессы, приводящие к снижению запаса поверхностной энергии адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы — гегетрогенность и [c.365]

    Проблема устойчивости является одной из важнейших в науке о коллоидных системах и имеет большое прикладное значение, в частности, при управлении процессами обогащения и б-рикетирования. Коллоидные системы благодаря их большой удельной поверхности являются термодинамически неравновесными системами (тенденция к понижению поверхностной энергии при уменьшении удельной поверхности). Неустойчивость коллоидных систем проявляется или в укрупнении частиц (рекристаллизация), или чаще в их слипании и образовании агрегатов (коагуляция). Устойчивость коллоидных систем может быть повышена или понижена с помощью тех или иных воздействий, способствующих или препятствующих рассмотренным явлениям коагуляции и пептизации. [c.236]

    Коллоидные системы могут быть получены методом конденсации с помощью реакций почти любого типа, если только для этого существуют подходящие условия малая растворимость полученного соединения и наличие в системе стабилизатора — электролита или вещества, которое адсорбируется на поверхности образующейся коллоидной частицы и предупреждает ее слипание с другими частицами. Кроме того, концентрация электролита, не являющегося стабилизатором в такой системе, не должна превышать порога коагуляции, так как в противном случае золь будет неустойчивым и ско-агулирует.. [c.15]

    Седиментационная или, как ее раньше называли, кинетическая устойчивость характеризует способность системы к равномерному распределению частиц по всему объему системы. Эта устойчивость зависит от интенсивности теплового движения частиц, влияния на них гравитационного поля и вя-зкости дисперсионной среды. Коллоидные системы, особенно лиозоли, имеющие частицы малого размера, обладают достаточно высокой седиментациопной устойчивостью. Грубодисперсные системы, например суспензии или эмульсии, относятся к седиментационно неустойчивым системам. [c.95]

    Согласно термодинамическо трактовке причины агрегативной неустойчивости заключены в самих признаках коллоидного состояния системы — ее гетерогенности и высокой дисперсности. Совокупность этих признаков обусловливает достаточно высокое значение свободной поверхностной энергии, что и является причиной неустойчивости коллоидной системы. [c.95]


Смотреть страницы где упоминается термин Коллоидные системы неустойчивость: [c.275]    [c.279]    [c.39]    [c.49]    [c.432]    [c.348]   
Курс коллоидной химии (1976) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные



© 2025 chem21.info Реклама на сайте