Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рассматриваемые частицы и процессы

    Излучение или поглощение квантов анализируемой системой можно рассматривать как процесс возникновения характеристических сигналов, несущих информацию о качественном и количественном составе исследуемого вещества. Частота (длина волны) излучения определяется составом вещества. Интенсивность аналитического сигнала пропорциональна количеству частиц, вызвавших его появление, т. е. количеству определяемого вещества или компонента смеси. [c.7]


    Рассматривая процесс взаимодействия периферийного и центрального потока, Е.Н. Соколов указывает, что при этом происходит выравнивание термодинамических температур и угловых скоростей. Тепловая и кинетическая энергия передается от центрального потока периферийному. Большая угловая скорость потока объясняется формированием его из частиц газа, увлекаемых из периферийного потока. Не рассматривая природу процесса, он ведущим при взаимодействии считает приосевой поток. Расчет вихревой трубы основывается на распределении тангенциальных скоростей в сопловом сечении по закону квазитвердого вихря. Вьще-ляются два режима работы критический, когда давление охлаж- [c.20]

    Если рассматривать, например, процесс измельчения твердых тел до частиц (зерен) определенного размера, то может оказаться, что некоторая часть материала, поступающая в мельницу, уже имеет заданную величину. Измельчение таких зерен будет связано с излишними затратами энергии и, кроме того, приведет к некондиционному продукту. Следовательно, зерна требуемых размеров перед направлением материала на измельчение необходимо отделить. [c.406]

    Процесс эмульсионной полимеризации является характерным примером гетерофазного процесса, который в силу малых размеров частиц дисперсной фазы может рассматриваться как процесс физико-химического взаимодействия между отдельными взаимопроникающими континуумами сплошных сред (каплями мономера, частицами полимера, водной фазой). Уравнения сохранения массы такого многофазного многоскоростного континуума можно записать в виде [32—34] [c.147]

    Определим соотношения для фазовых переходов и сил трения. По определению равно количеству вещества й-й составляющей смеси, перешедшей в /-ю за единицу времени в единице объема смеси. Процесс кристаллизации для отдельной кристаллической частицы обычно рассматривается как процесс, протекающий в две стадии [27, 61, 62]. Первая стадия описывается уравнением массопередачи [c.213]

    Теоретическое определение коэффициентов массоотдачи, как и в других случаях конвективного массопереноса, возможно только для наиболее простых случаев. Как правило, рассматриваются частицы сферической формы при ламинарном режиме обтекания потоками жидкости или газа. Решение простых задач позволяет раскрыть механизмы массообменных процессов и обосновать вид критериальных зависимостей (5.2.5.1) для описания более сложных процессов. [c.274]

    При наличии в среде абразивных частиц процесс разрушения рабочих поверхностей запорной арматуры можно рассматривать как совокупность двух сопряженных процессов электрохимического и механического. [c.142]


    Для осадков, размер частиц которых достаточно велик (порядка 1 мм и более), величину можно вычислить, пользуясь уравнением (11,135). Для таких относительно крупных частиц процессы пептизации и агрега-ции, а также поверхностные явления не играют существенной роли. В данном случае процесс фильтрования можно рассматривать как гидродинамический процесс течения жидкости сквозь пористую среду. [c.197]

    В природе и технике протекает огромное количество разнообразных химических процессов — начиная от простейших реакций веществ в лабораторных условиях и кончая сложнейшими процессами, протекающими в живых организмах. Вместе с тем число известных в настоящее время партнеров элементарных реакций сравнительно невелико. Это молекулы, свободные радикалы и атомы, ионы и комплексы различного химического состава и строения. Свойства этих частиц в основном и определяют особенности механизма и закономерности развития химических процессов. Именно этим обусловлена возможность создания общих теоретических основ химической кинетики, позволяющих с единой точки зрения рассматривать разнообразные процессы органической, неорганической и биологической химии. [c.3]

    Использование высоких температур приводит к тому, что атомы претерпевают возбуждение, так как другие частицы, обладающие высокой кинетической энергией, при столкновении передают им энергию, т. е. кинетическая энергия одних частиц переходит во внутреннюю энергию других. Схематично данный процесс изображают следующим образом A+M- A -t-M, где А — атом какого-либо вещества, А — атом в возбужденном состоянии, М — любая частица, обладающая запасом кинетической энергии.. Такое соударение называется ударами I рода. Если, в своЮ очередь, возбужденный атом А передает при очередном соударении свою энергию другому атому, например С, и возбудит его,, т. е. А + С->А + С. то такие соударения, когда происходит обмен внутренней энергией, называются ударами II рода. Процесс передачи энергии атомом А атому С может рассматриваться как процесс дезактивации атома А.  [c.34]

    В гетерогенном катализе скорость химической реакции увеличивается под влиянием катализаторов, образующих отдельную фазу последние вместе с реагентами и продуктами реакции составляет гетерогенную систему. Это — обычно системы твердое тело — газ и твердое тело — жидкость. Реакция происходит на поверхности катализатора — твердого тела, а газ и жидкость могут рассматриваться в качестве резервуара частиц. Процесс в случае гетерогенного катализа включает в себя пять стадий подвод (транспорт) веществ к поверхности адсорбцию по крайней мере одного из реагентов собственно химическое превращение на поверхности десорбцию продуктов реакции отвод вешеств от поверхности. [c.764]

    Притягивающие и отталкивающие силы между адсорбатом и адсорбентом могут простираться на 50 нм, а их величины меняются. Рассматривая начальный процесс адсорбции, следует принимать во внимание подвижность адсорбата. Адсорбированная частица может находиться в месте своей начальной адсорбции в течение всего времени или она может мигрировать от одного места к другому (рис. 7.8-5). В последнем случае необходимо преодолевать потенциальные энергетические барьеры, разделяющие соседние места. Поскольку энергия активации для миграции часто меньше энергии связывания, сделать это совсем нетрудно. [c.523]

    До сих пор мы рассматривали такие процессы массообмена, при которых скоростные и концентрационные поля вблизи частицы не менялись со временем. Математически это выражалось в отсутствии производных концентраций по времени в уравнениях типа (1.144) и производных скорости по времени в уравнениях гидродинамики. Благодаря отсутствию этих производных, исключаются из описания периоды формирования гидродинамических и диффузионных стационарных режимов. Тем самым утрачивается интересная и полезная информация. В качестве примера рассмотрим нестационарный массообмен между сферической частицей и неподвижной жидкостью [114]  [c.59]

    Пример 5.9. Рассматривается расчет процесса противоточной многосекционной адсорбции при следующих исходных данных. Массовый расход газа Мс = = 1,04 кг/(м2-с) Со = 5-10-з кг/м и Ск = 0,01-10- кг/м радиус сферических зерен / = 2-10-3 м а = 250 кг/м коэффициент внутренней диффузии через насыщенные слои адсорбента 2,3-10- м /с плотность частиц рт = [c.310]

    Так как перемешивание рассматривается как процесс перемещения частиц [c.603]

    Конденсационное пылеулавливание (растворение, кристаллизация, истирание и т. д.) рассматривается как процесс эволюции во времени большой системы дисперсных частиц. Рост одиночной частицы шаровой формы из переохлажденного пара или газа, пересыщенного парами жидкости, подчиняется общим законам гидродинамики и тепло-массообмена в сплошных средах, которые позволяют достаточно точно предсказать скорость ее роста. Если анализировать усредненное поведение ансамбля одинаковых частиц, то можно говорить о среднем непрерывном изменении размера частиц на фоне флуктуаций этого изменения. Скорость изменения объема частиц в ансамбле можно представить как сумму средней непрерывной скорости роста (т1( 0) и случайной функции времени п (т), отражающей колебания мгновенной скорости роста относительно среднего значения [98]  [c.685]


    Принцип ЖМКО относится к реакциям обобщенных кислот и оснований Льюиса. В данном случае под кислотами понимают акцептор электронной пары — протон, катион ме-. талла, заряженный или нейтральный комплекс металла, органическое соединение — любую частицу А, имеющую вакантную атомную или молекулярную орбиталь. Соответственно под основанием понимают донор электронной пары — ацидо-лиганд или сложное органическое соединение — любую частицу В, имеющую электронную пару на верхней занятой атомной или молекулярной орбитали. Взаимодействие кислот и оснований Льюиса рассматривают как процесс обобществления по крайней мере одной пары электронов  [c.40]

    Ранее было отмечено, что в приложении статистической физики к пористым средам можно выделить два направления в одном делаются попытки связать статистическое описание самих пористых сред с общей статистикой, тогда как в другом рассматриваются различные процессы в пористых средах на основании общих положений физической статистики. Кратко рассмотрим возможности общего описания самих пористых сред. Принципиально к системам случайного сложения большого числа элементов допустимо применять многие понятия статистики. Можно говорить об энтропии такой системы, вводить понятие статистического ансамбля и пр. Однако нужно иметь в виду, что для обычной засыпки тепловое движение частиц отсутствует (истинное движение молекул в частицах не имеет определяющего значения), т. е. эти системы следует считать находящимися при абсолютном нуле температуры. Вводя понятие ансамблей таких систем, можно показать, что они вообще дают [c.284]

    Метод теоретических тарелок позволяет, таким образом, для противоточных аппаратов обойти расчет самого диффузионного процесса он заменяется расчетом равновесия, дополненным эмпирическими коэффициентами. Если известны коэффициенты переноса, то длину, эквивалентную одной теоретической тарелке, или коэффициент полезного действия можно рассчитать. Для тарельчатых колонн естественным представляется нестационарный метод расчета коэффициента полезного действия, подробно разработанный Кишиневским [8]. В этом методе рассматривается нестационарный процесс диффузии для жидкой частицы за время ее пребывания на тарелке, без пользования понятием приведенной пленки. Для насадочных колонн успешно применяется стационарный метод расчета в приближении двойной пленки при этом число теоретических тарелок выражается через число единиц переноса (ЧЕП), которое, согласно формуле (III, 38а), связано с критерием Стэнтона. Изложение этого вопроса можно найти в монографии Рамма [9], к которой и отсылаем интересующегося читателя. Анализ, учитывающий процессы не только диффузии, но и теплопередачи, дал Жаворонков [101. [c.167]

    Ранее синтез пигментов рассматривался как процесс получения соединений определенного химического состава В начале и особенно в середине нашего столетия развитие структурных методов исследования химических соединений позволило выявить связь кристаллической структуры пигментов с их свойствами Оказалось, что для пигментов основным является не химический состав, который часто может быть переменным, а кристаллическое состояние, кристаллическая структура, размер и форма частиц С этого времени синтез пигментов стал рассматриваться как направленный рост кристаллов [c.262]

    Пусть в аппарат в единицу времени поступает N частиц размера 1д. Через любое сечение аппарата также будет проходить в единицу времени N частиц размера I. Если бы это было не так, то в промежутке между верхним и произвольным сечениями число частиц непрерывно увеличивалось бы или уменьшалось, т. е. процесс не был бы стационарным. Рассматривая стационарный процесс растворения, имеем  [c.59]

    Механизм флокулирующего действия ВМВ объясняется адсорбцией макромолекул или их ассоциатов на нескольких твердых частицах гетерогенной системы с образованием полимерных мостиков, связывающих эти частицы между собой. При этом на каждой частице адсорбируется не вся макромолекула, а часть ее сегментов, размер которых на несколько порядков меньше размера самой частицы. Адсорбция может быть обусловлена межмолекулярными силами — вандерваальсовы и водородные связи, а также химическими — ионные и ковалентные связи. Эти силы действуют на различных расстояниях, возникающие связи имеют неодинаковую энергию. В некоторых работах адсорбция отдельных звеньев рассматривается как процесс ионного (анионного или катионного) обмена. [c.625]

    Берцелиус [3, 61] первым высказал мысль, что продукты полимеризации, т. е. полимеры, представляют собой вещества, имеющие тот же процентный состав, что и исходные вещества, но отличающиеся от них по молекулярному весу. Голлеман [32] описывал полимеризацию как процесс, при котором две или больше реагирующие молекулы соединяются вместе таким образом, что исходное вещество можно регенерировать обратно. Штаудингер [79, 80], критикуя утверждение Голлемана, показал, что этот критерий совсем не существенен для процесса полимеризации, потому что может быть менее глубокая степень разложения, чем деполимеризация в мономолекулярное состояние. Другими словами, полимеризация не всегда сопровождается деполимеризацией и если даже сопровождается, то деполимеризация не обязательно регенерирует исходное вещество. Обратимость может быть неполной. Штаудингер рассматривает полимеризацию как взаимодействие двух или более молекул одного соединения с образованием продукта, имеющего тот же состав, но больший молекулярный вес. Сделана попытка [29] подразделить полимеризацию на физический полиморфизм (так же, как в случае серы) и полимерию с этой точки зрения полимеризация рассматривалась как процесс, который включает структурно-химические изменения. Предполагалось, что процессы полимеризации аналогичны процессам изомеризации в том смысле, что участвующее вещество совершенно изменяется. Структурно-химические изменения сообщают полимеру особую характеристику и отражаются на изменяемости его физико-химических свойств. Представления о полимеризации не всегда отличаются от представлений об ассоциации. Если первичные частицы рассматривать как химические молекулы, то удвоение молекулярного веса можно рассматривать как изменение степени -агрегации и образование таких молекулярных агрегатов будет подчиняться законам кристаллизации из насыщенных растворов. [c.634]

    Здесь мы не рассматриваем гетерогенный процесс стабилизации квазимолекулы прп ударе ее о стенку, которая, таким образом, играет роль третьей частицы. [c.197]

    Для поля концентраций наиболее полное разложение по малым числам Ре (до членов порядка Pe lnPe) получено в работе [24]. Задача решалась в предположении реакции первого порядка, протекающей на поверхности сферы, для малых, но конечных чисел Re и Ре. В качестве принималось значение 1 = —с/с . Рассматривался установившийся процесс диффузии в потоке вязкой несжимаемой жидкости, обтекающей жесткую сферическую частицу радиуса а. На большом расстоянии от сферы скорость потока [c.252]

    По мнению авторов статьи, большое значение для повышения прочности получаемого материала, наряду с адсорбционным упрочнением, имеет заполнение внутренних пор графитовых частиц связующим веществом, особенно синтетическими смолами. Смещение, вальцевание и затем прессование хможно рассматривать как процесс пропитки, при котором связующее проникает в поры граф Итовых частиц. При 100 -160°С синтетические смолы полимеризуются и материал приобретает повышенные физико-механические свойства. [c.112]

    В фазовых контактах сцепление частиц обусловлено близкодействующими силами и осуществляется по крайней мере 10-... 10 межатомными связями вследствие увеличения площади контакта по сравнению с атомным [174]. В зависимости от дисперсности и средней прочности отдельного контакта прочность структуры составляет 10. .. 10 Н/м и более. Образование фазовых контактов можно рассматривать как процесс частичной коалесценции [174] твердых частиц из-за увеличения площади непосредственного контакта между ними с переходом от "трчечного" соприкосновения к когезионному взаимодействию на значитеяы ой площади. Такой переход может осуществляться постепенно, например вследствие диффузионного переноса вещества в контактную зону при спекании. Чаще он происходит скачкообразно, как правило, в тех случаях, кс гда возникновение фазового контакта связано с необходимостью преодоле1 ия энергетического барьера, определяемого работой образования устойчивого в данных условиях зародыша - контакта - первичного мостика между частицами. Возникновение и развитие его могут быть результатом совместной пластической деформации частиц в местах их соприкосновения под действием механических напряжений, превышающих предел текучести материала частиц. Зародыш-контакт может образоваться и при вьщелении вещества новой фазы из ме-тастабильных растворов в контактной зоне между кристалликами - новообразованиями срастание кристалликов ведет при этом к формированию высокодисперсных поликристаллических агрегатов [174,193]. [c.106]

    Кроме поглощения и вынужденного испускания в теории излучения рассматривается третий процесс — спонтанное излучение. В этом случае возбужденная частица теряет энергию, достигая более низкого уровня, в отсутствие излучения. Спонтанное излучение — случайный процесс, и скорость дезактивации возбужденных частиц за счет спонтанного излучения (при статистически большом числе возбужденных частиц) является величиной первого порядка. Таким образом, константа скорости первого порядка может быть использована для описания интенсивности спонтанного излучения эта константа является коэффициентом Эйнштейна Л (Ami), который для спонтанного процесса играет ту же роль, что и константа второго тюрядка В для индуцированных процессов. Скорость спонтанного излучения равна Aminm, и интенсивность спонтанного излучения может быть использована для расчета Пт, если Ami известен. Большинство явлений, связанных с испусканием, которые изучаются в фотохимии, — флуоресценция, фосфоресценция и хемилюминесценция — обычно являются спонтанными, и в дальнейшем мы будем опускать это прилагательное. Если же испускание вынужденное, этот факт будет отмечаться особо. [c.30]

    Перенос ионов через границу растворов можно только приближенно рассматривать как процесс термодинамически обратимый. Равновесие нарушается из-за диффузии частиц вещества из одного раствора в другой. В рассматриваемом случае ионы Н3О+ и С1- будут пе-)емещаться от первого раствора ко второму. Но ионы 4зО+ и С1 двигаются с различными скоростями (под- [c.180]

    Так как перемешивание рассматривается как процесс перемещения частиц в трехмерном пространстве, то для оценки этого процесса велнчннамн. которые могут быть найдены экспертлентально. необходимо основываться на степени распределения исходных веществ во всем объеме загрузки. Другими словами, мы должны быть в состоянии оценить полноту перемешивания путем наблюдения за распределением элементов поверхности раздела во всей массе материала. Еслн объем всей загрузки разделить на большое число элементарных равных объемов (рис. ХУ-4), а поверхность — на я равных элементов (рис. ХУ-5). то результат перемешивания может быть выражен величиной, характеризующей равномерность распределения элементов развитой поверхности раздела среди этих элементарных [c.426]

    В работах Гиошона с сотр. рассматривали ТСХ как одномерную хроматографию с учетом размывания зон с помощью уравнения Нокса. Кроме того, движение элюента по пластине рассматривалось как процесс, осложненный испарением элюента с по верхности пластины и адсорбцией активного компонента из паро элюента в не полностью насыщенной хроматографической камере. Эффективность пластины N рассматривалась как функция с1р, т. е. была продемонстрирована необходимость увеличения диаметра частиц для достижения максимального значения N (при этом время анализа и хроматографическое размывание возрастают). [c.341]

    Это уравнение отражает эволюцию любого начального распределения дисперсных частиц по размерам У к равновесному состояншо. Картина, описываемая уравнением Фоккера — Планка, согласуется с уравнением Ланжевена (7.5.4.1), рассматриваемым совместно со статистическими допущениями относительно г р,(х). Однако в уравнении (7.5.4.5) информация об изучаемом процессе представлена в значительно более компактной форме. Статистическое обоснование полного кинетического уравнения (7.5.3.5) можно найти в работе [83]. Непосредственное его решение возможно только для довольно ограниченного числа частных случаев [59], При решении многих прикладных задач нет необходимости рассматривать непрерывный процесс как таковой, поскольку при некотором приближении можно интересоваться не точным объемом частицы, а вероятностью того, что частица пршгадлежит заданному интервалу объемов. Такой подход оправдан тем, что решение задачи проводится с помощью ЭВМ. Возникает задача разработки дискретной модели непрерывного процесса. В связи с этим рассматривают систему, имеющую конечное число возможных состояний Ух, Уп, Для системы дисперсных частиц в качест- [c.686]

    С другой стороны, можно полагать, что иногда за время сближения частиц, происходящего в результате теплового движения, не успевает устанавливаться состояние адсорбционного равновесия. Тогда перекрытие двойных слоев необходимо рассматривать как процесс, протекающий при постоянном заряде и увеличении потенциала поверхностей. Поскольку зависимости энергии отталкивания от расстояния между частицами в обоих случаях незначительно отличаются друг от друга [37] — энергия ионно-злектростатического взаимодействия при малых расстоя- [c.22]

    Проанализируем падение пробной частицы сквозь насыпной слой насадки высотой Н. Движение частицы можно рассматривать как процесс случайных блужданий, состоящий из неслучайного продвижения на шаг и случайного блуждания в поперечной плоскости с шагзхми Лд. Если считать, что vl — константы, то такой процесс описывается уравнением диффузии [c.88]

    Образование хлопьев при введении в воду минеральных коагулянтов следует рассматривать как совместную коагуляцию гидроксидов алюминия и Железа с находящимися в воде коллоидными частицами минеральными (глинистые минералы, кварц) и органическими (гумусовые и дубильные вещества). Эти частицы в большинстве случаев отрицательно заряжены, а частицы гидратированных гидроксидов алюминия и железа несут положительный заряд. Следовательно, в основе образования хлопьев лежит взаимодействие разноименно заряженных коллоидных частиц— процесс, наиболее энергетически вероятный. Этот процесс можно рассматривать и как адсорбцию высокодисперсных первичных частиц положительно заряженных гидроксидов на активных отрицательно заряженных центрах поверхности более крупных частиц природных коллоидов. Последующая кoaгy Iяцйя может происходить благодаря уменьшению термодинамического потенциала (заряда) поверхности и снижению энергетического барьера между самими коллоидными частицами либо, что более вероятно, между адсорбированными на одних частицах гидроксидами металлов и свободной поверхностью других частиц. При этом образуются агрегаты мозаичной структуры, аналогичные агрегатам, образующимся при флокуляции. [c.117]

    В теориях спонтанной кристаллизации процесс образования и роста кристалла из пересыщенного раствора какого-либо одного вещества рассматривается как процесс, протекающий длительно. В случае же коллоидных систем возникиовение коллоидных частиц происходит из сильно перенасыщенных растворов, образующихся в результате химического взаимодействия двух или более компонентов, причем сразу возникает множество мелких частиц. Поэтому существующие теории кристаллизации не могут быть непосредственно применены при изучении образования коллоидных частиц. [c.167]

    Можно считать, что классификация растворов, да1шая Оствальдом и основанная на различии размеров частиц растворенного вещества, в настоящее время является недостаточной. Несомненно, что все системы, содержащие частицы большого размера, независимо от их природы, будут обладать рядом общих свойств, и мы объединим их термином коллоиды лишь в этом смысле. Однако большинство свойств коллоидов, как то адсорбционные процессы, явления пептизации и коагуляции, оптические свойства и т. п., связывается с микрогетерогенностью коллоидных растворов и с определением коллоидных частиц как агрегатов, состоящих из большего или меньшего количества молекул и обладающих поверхностью раздела. К собственно коллоидным системам большинство исследователей относит именно системы, в которых частицы представляют собой подобные агрегаты в отличие от истинных растворов, содержащих вещество в молекулярной стенени дисперсности. При этом размеры молекул истинно-растворенного вещества, обладающего большим молекулярным весом (например, истинно-растворенные красители), могут иметь большие размеры, чем частицы тонко диспергированных коллоидов, как, например, золото или окись железа (15—20 А). Наконец в случае высокомолекулярных веществ мы имеем молекулы с молекулярным весом в несколько десятков и даже сотен тысяч, которые, по терминологии Оствальда, должны быть отнесены к коллоидным частицам. В то же время эти высокомолекулярные вещества могут присутствовать в растворе в виде отдельных молекул. Возникает вопрос, должны ли мы рассматривать растворы соединений с большим молекулярным весом как растворы коллоидные или же мы можем точнее передать их свойства, описывая их как истинные растворы Этот вопрос является одним из основных, хотя некоторые исследователи, как, например, Кройт [11, рассматривая коллоидные процессы, сознательно воздерживаются от обсуждения этого вопроса. [c.242]


Смотреть страницы где упоминается термин Рассматриваемые частицы и процессы: [c.173]    [c.339]    [c.5]    [c.696]    [c.111]    [c.143]    [c.83]    [c.144]    [c.358]    [c.338]    [c.7]   
Смотреть главы в:

Физико-химические процессы в газовой динамике Том 1 -> Рассматриваемые частицы и процессы




ПОИСК







© 2025 chem21.info Реклама на сайте