Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подложки процесс структурообразования

    Экспериментально установлено, что на величину адгезии кремний-органических лаков к медной подложке влияет состав самого лака. С увеличением эластичности пленок растет величина адгезии. Возможно, что добавка наполнителя влияет на механизм процессов структурообразования пространственных коагуляционных каркасов в наполненных системах 14]. Кроме того, добавка наполнителя ведет к уменьшению внутренних механических напряжений в готовой пленке, что, следовательно, ведет к увеличению адгезии. [c.60]


    Дисперсии представляют собой сложные коллоидные системы, состоящие из частиц полимерной фазы, покрытых защитным веществом, и распределенных в дисперсионной среде, содержащей растворимые и нерастворимые ингредиенты. В соответствии с этим свойства дисперсий и процесс пленкообразования из этих систем определяются тремя основными факторами структурой и строением частиц, природой и характером распределения на их поверхности защитных веществ, составом дисперсионной среды. Роль каждого фактора в процессе пленкообразования и влияние этих факторов на свойства материалов и изделий определяются условиями переработки дисперсий. При получении пленок высушиванием посредством удаления влаги образование контактов между частицами происходит при определенной концентрации системы, и последние два фактора не оказывают существенного влияния на механизм пленкообразования. Однако природа защитных и других веществ, содержащихся в дисперсионной среде и остающихся в пленке после окончания процесса формирования, влияет на их свойства. При осуществлении процесса пленкообразования через стадию желатинизации путем удаления дисперсионной среды на пористых подложках или при воздействии растворов электролитов часть защитных веществ уходит с поверхности частиц, что оказывает влияние на процесс структурообразования при формировании пленок. Особенно значительно влияние природы защитных веществ и характера их распределения на поверхности частиц проявляется [c.201]

    Специфическое влияние поверхностных процессов на структурообразование в покрытиях, приводящее к возникновению неоднородной структуры по толщине и поверхности пленки, является типичным для покрытий из полимеров различного химического состава, пленкообразующих разных типов и наблюдается при формировании покрытий при разных режимах на поверхности твердых тел разной природы. Отсутствие ориентированных упорядоченных структур в блоках из полистирола, ненасыщенных полиэфиров, эпоксидов, акриловых порошков и других пленкообразующих и наличие их в покрытиях из этих же систем свидетельствует об ином механизме структурообразования в покрытиях, обусловленным адсорбционным взаимодействием пленкообразующего с поверхностью подложки, резким торможением релаксационных процессов, возникновением плоского напряженного состояния, вызывающего ориентацию структурных элементов в плоскости подложки. [c.19]


    Все это свидетельствует о том, что особенности морфологического строения подложки, обусловливающие характер распределения активных центров на их поверхности, в значительной мере определяют структуру поверхностных слоев покрытий, граничащих с подложкой. Активные центры на поверхности подложки выполняют роль центров структурообразования и определяют специфику протекания полимеризационных процессов, приводящих к формированию тех или иных структур. [c.26]

    Обнаруженные закономерности в изменении надмолекулярной структуры ненаполненных и наполненных покрытий в зависимости от природы подложки проявляются для покрытий, сформированных в различных условиях. Число двойных связей ненасыщенного полиэфира и стирола, вступающих во взаимодействие в процессе полимеризации, можно регулировать путем изменения температуры и продолжительности формирования покрытий. Из кинетических данных об изменении внутренних напряжений следует, что при толщине 300 мкм процесс формирования покрытий при 20 °С заканчивается через 20 сут, а при 80 °С — через 6 ч. Для покрытий, сформированных в этих условиях, были получены сравнительные данные о влиянии режима отверждения на их структуру. В покрытиях, отвержденных при 20 °С на подложках с малой адгезией, формируется структура глобулярного типа. При формировании покрытий в этих же условиях на стали наблюдается образование сетчатой структуры из анизодиаметричных структурных элементов. Использование меньшего числа центров структурообразования и более рыхлая упаковка структурных элементов в граничных слоях покрытий, отвержденных при 20 °С, обусловлены малой подвижностью структурных элементов в этих условиях формирования. С повышением температуры до 80 °С уменьшается вязкость полиэфиров и увеличивается доступность для структурных элементов большего числа активных центров структурообразования на поверхности подложки. [c.30]

    Процесс формирования покрытий из мономерных и олигомерных систем, осуществляемый в результате протекания полимеризации их непосредственно на подложке, сопровождается также усадкой пленки. В этом случае, как и при формировании покрытий из растворов полимеров, на величину внутренних напряжений оказывает влияние только незначительная часть общей усадки, проявляющаяся после гелеобразования в системе. Скорость структурообразования в таких системах определяется числом функциональных групп, участвующих в полимеризации, и скоростью их использования и зависит от химического состава пленкообразующего, концентрации раствора, природы и концентрации инициаторов и ускорителей полимеризации, условии формирования. [c.50]

    В процессе пленкообразования из раствора или расплава в результате физической сорбции и хемосорбции макромолекул на активных центрах поверхности подложки формируется межфазная граница пленка - металл. При этом по сравнению с объемом пленки возникает некоторое дополнительное исло полярных групп (ионных, ковалентных и более слабых дипольных связей), повышающих интегральную полярность покрытия. Значительное увеличение адгезии к металлу при окислении полиэтиленовых покрытий обусловлено диполь-ион-ным взаимодействием образующихся карбонильных и гидроксильных групп полимера с ионами оксида металла. Вместе с тем граничные слои полимера или переходная композиционная зона могут отличаться от основного объема концентрацией отдельных компонентов системы или примесей и, следовательно, типом диполей, их удельной концентрацией и взаимным расположением. Поскольку толщина (протяженность) переходной зоны способна достигать нескольких микрометров, ее вклад в полярность пленки может быть существенен. Изменение полярности пленки за счет адгезионных взаимодействий и структурообразования в переходной зоне зависит от природы и функционального состава как пленкообразователя, так и поверхности металла, способа подготовки поверхности и условий формирования. [c.119]

    Одним из способов создания тиксотропной структуры является воздействие на систему магнитного поля [100]. При оптимальных условиях магнитное поле играет роль диспергатора, препятствующего агрегации структурных элементов и способствующего формированию однородной пространственной сетки из ассоциированных макромолекул. Было изучено [178] влияние магнитного поля на структурообразование в растворах эпоксидного олигомера, процесс формирования покрытий и их физикомеханические свойства. Объектом исследования являлся эпоксидный олигомер ЭД-6, отверждаемый полиэтиленполиамином и пластифицированный 25% дибутилфталата. Покрытия наносили на стеклянные подложки и подвергали воздействию магнитного поля напряженностью от 32 до 100 кА/м в течение оптимальной продолжительности, равной 30 мин. Внутренние напряжения измеряли поляризационно-оптическим методом в двух взаимно перпендикулярных направлениях — по направлению магнитных линий поля и перпендикулярно им. Влияние магнитного поля на характер структурообразования в жидкой фазе исследовали по изменению реологических свойств олигомеров. Структуру покрытий изучали методом электронной микроскопии путем снятия углеродно-платиновых реплик с поверхности покрытий, предварительно подвергнутых кислородному травлению по оптимальному режиму. На рис. 4.25 приведены данные о кинетике нарастания внутренних напряжений при формировании покрытий яри 80 °С толщиной 400 мкм — исходных и подвергнутых действию магнитного поля различной напряженности. Из данных, приведенных на рисунке, видно что процесс формирования исходных покрытий до предельной максимальной величины напряжений заканчивается через 8—10 ч. Магнитное поле напряженностью 32—48 кА/м не оказывает существенного влияния на величину внутренних напряжений и кинетику их нарастания в этих условиях формирования. С увеличением напряженно- [c.178]


    ПАВ й полимеров на железоокисном пигменте при воздействии воды и ее влияния на структурообразование лакокрасочного материала и процессы избирательного смачивания поверхности влажного металла, подтверждено, что наиболее эффективными добавками являются четвертичные аммониевые основания. Это обусловлено их высокой хемосорбцией во влажных условиях на пигменте и подложке, что обеспечивает избирательное смачивание лакокрасочным материалом поверхности металла на границе раздела вода — металл — лакокрасочный материал. Кроме того, добавки четвертичных аммониевых оснований придают покрытию наиболее плотную структуру, в связи с чем покрытия, полученные на мокрой поверхности, не уступают аналогичным покрытиям, полученным на сухом металле. [c.164]

    Наиболее богатая картина вторичных структур получается во всех растворах при температуре подложки 90°, ио здесь уже появляются некоторые отличия, связанные, по-видимому, со скоростью испарения растворителя. Растворы полиэтилена в декалине и тетралипе (испарение моментальное) дают картину вторичных структур аналогично растворам полиэтилена в ксилоле (рис. 1, г, ). При этом видны пачки, ленты, спирали, сферолиты. В а-хлор-нафталипе такого многообразия структур не наблюдается, и на рис. 2, б видны только хорошо развитые спирали. По-видимому, это различие в электронно-микроскопической картине связано с разной скоростью испарения а-хлорпаф-талина и ксилола (ксилол испаряется очень быстро, и возникшие в момент высаживания структуры не успевают упорядочиться в более сложные образования). Поэтому при 90° получается картина сосуществования более совершенных и простых структур. а-Хлорнафталин испаряется при температуре подложки 90° в течение 40 мин., и, следовательно, имеется время для протекания дальнейшего процесса упорядочения в растворе. Поэтому на рис. 2, о видны исключительно спиралеобразные и пластинчатые вторичные структуры. При повышении температуры подложки до 100° и выше все растворы дают аналогичную картину хаотично расположенных лент и пачек (рис. 2, е). В этом случае разность в скоростях испарения растворителей невелика (10 мин.), и это не сказывается на процессе структурообразования полиэтилена низкого давления. Таким образом, влияние температуры на процесс структурообразования полиэтилена можно объяснить следующим образом при низких температурах подложки преобладающую роль в процессе структурообразования, который идет в капле раствора, будет играть скорость достижения каплей раствора температуры, при которой выпадает полимер. Так, при температуре 70° образуются более сложные вторичные структуры — плоскости, спирали и кристаллы. [c.146]

    Влияние подложки на процесс структурообразования проявляется также при получении покрытий из растворов полимеров. На рис. 1.17 приведены данные о структуре различных слоев покрытий толщиной 300 мкм из растворов полиуретанов в диметилформамиде на основе дифенилметандипзоцианата и сложного полиэфира, граничащих с воздухом и с подложкой. Формирование покрытий осуществлялась на стекле и на силиконе. Адгезия покрытий к стеклу, определяемая методом отслаивания, составляла 0,12 кН/м, к силикону — более чем на порядок ниже. Видно, что структура граничных слоев существенно зависит от текстуры подложки. Наличие на поверхности силикона неоднородной глобулярной структуры опособствует формированию такой же структуры в прилегающих слоях покрытий. Формирование неоднородной структуры в таких покрытиях ухудшает их физико-механические свойства, как видно из данных, приведенных на рис., 1.18. [c.34]

    В связи с тем, что одним из существенных факторов, определяющих кинетику формирования покрытий и их свойства, является цроч ность адгезионного взаимодействия, значительный интерес представляют исследования, направленные на установление этой взаимосвязи на простых модельных системах. Наиболее удобными объектами являются олигомеры. Процессы структурообразования в этом случае в значительной мере протекают при осуществлении полимеризации их непосредственно на подложке. Исследовалось [124, 125] влияние прочности взаимодействия ненасыщенного олигоэфира с аэросилом на внутренние напряжения, скорость протекания релаксационных процессов и кинетику полимеризации. [c.98]

    В результате для молекул эпоксиметакрилового эфира предпочтительной является развернутая конформация, что приводит к формированию в жидкой фазе ассоциатов анизодиаметричного типа. Этот ассоциативный порядок сохраняется и при формировании покрытий цод действием ультрафиолетового излучения. При изучении надмолекулярной структуры покрытий на различных этапах отверждения методом электронной микроскопии было установлено, что через 2 мин облучения в покрытиях из эпоксиметакриловых эфиров на металле возникает неоднородная структура наряду с глобулами диаметром 10 нм формируются более крупные структуры анизодиаметричного типа. Вместе с тем наблюдаются отдельные участки, структура которых не выявляется. При облучении в течение 3 мин обнаруживается однородная сетчатая структура из плотно упакованных структурных элементов анизодиаметричной морфологии. Увеличение продолжительности процесса отверждения приводит к разрушению анизодиаметричных структур. Более медленно процессы структурообразования протекают при формировании покрытий на стеклянной подложке, отличающейся меньшей адгезией к эпоксиметакриловым олигомерам. После 2 мин облучения структура покрытий в этих условиях формирования выявляется нечетко видны лишь отдельные надмолекулярные образования диаметром около 5 нм. После 3 мин формирования обнаруживается неоднородная структура из глобул диаметром около 15— 20 нм и их агрегатов. Последующее увеличение продолжительности облучения приводит к разрушению структуры. [c.190]

    В слоях, прилегающих к подложке, возникает наиболее плотная высокодисперсная структура. Структурообразование в полиуретановых покрытиях также определяется влиянием твердой поверхности [323]. Этим влиянием обусловлен переход от мелкоглобулярной плотно у па кованной структуры к крупноглобулярной с агрегацией глобул. Влияние твердой поверхности на свойства прилегающих слоев характерно и для аморфных материалов. В общем, можно считать, что твердая поверхность оказывает влияние на прилегающий слой полимера в двух направлениях [306] пространственно — ограничивая объем, доступный звеньям макромолекул и более крупным кинетическим единицам, и энергетически — за счет молекулярного взаимодействия с некоторыми звеньями макромолекул. В результате изменяется плотность упаковки полимера в зоне контакта с субстратом, по-дру-гому протекают релаксационные процессы, а также процессы структурообразовапия. Поэтому многие свойства пленок полимеров, примыкающих к твердой поверхности, существенно отличаются от свойств полимерного материала в объеме независимо от того, является ли полимер аморфным или кристаллическим, а подложка — тонкодисперсным порошком или монолитным телом. Расширение исследований в этой области, изучение зависимости структуры, температуры стеклования, густоты сетки, электрических характеристик, термостойкости, твердости, прочности и других свойств полимерных материалов от тина твердой поверхности, проводимые в настоящее время [228, 250—253, 340, 372, 222, 225—241, 325, 326, 329], несомненно, будут способствовать успешному решению различных проблем адгезии, совершенствованию методов получения наполненных и комбинированных материалов, нанесения покрытий. [c.144]

    Иная структура обнаруживается при формировании полиэфиров на стекле (рис. 1.10,6), отличающимся большей на порядок прочностью взаимодействия с полиэфиром по сравнению с медной фольгой. Повышение адгезии и значительно меньшая скорость протекания релаксационных процессов свидетельствуют о возникновении на границе раздела полимер — подложка в этом случае большего числа центров структурообразования, специфически взаимодействующих с полимером в результате образования водородных связей между карбонильными группами смолы и гидроксильными группами подложки [22]. Это сопровождается возникновением в пограничном слое сетчатой структуры из анизодиамет-ричных структурных элементов (рис. 1.10,6). Такой характер структурообразования в полиэфирных покрытиях обусловлен особенностями строения стекла. С помощью углеродных реплик, оттененных различными металлами, методом электронной микроскопии обнаружена гранулярная структура стекла [23]. Средний размер гранул в зависимости от формы изменяется в пределах 5— 30 нм. В боросиликатных стеклах наряду с этим наблюдаются гранулы удлиненной формы, возникающие путем соединения более мелких образований в структуры размером до 200 нм. При элект-ронно-микроскопическом исследовании пленок стекла, полученных выдуванием в пламени горелки, обнаружены также сферические элементы диаметром 10 нм [24]. Методом срезов, полученных с помощью алмазного ножа [25], обнаружена микрогетерогенная структура боросиликатного стекла. Микрогетерогенности различной формы соответствуют участкам, обогащенным соединениями ВаО, 5102, Ь1гО. Аналогичные неоднородности в структуре стекла были обнаружены методом травления путем выщелачивания водой в течение 17 ч при 35 °С с последующей сушкой [26]. При исследовании структуры стекла с применением метода кислородного травления также обнаружена [4] неоднородная структура с равномерно распределенными по поверхности сферическими частицами (рис. 1.11). Наличие сферических структурных элементов на поверхности стекла способствует формированию таких же структур в поверхностных слоях покрытий, граничащих с подложкой (рис. 1.11,6). [c.24]

    Видно, что наибольшие внутренние напряжения возникают в покрытиях из полимеров, находящихся при температуре эксплуатации в стеклообразном состоянии, и особенно в покрытиях с пространственно-сетчатой структурой полимеров. Сравнительные данные для покрытий из олигомеров, образующих при термическом отверждении пространственно-сетчатую структуру, свидетельствуют о том, что наибольшие внутренние напряжения возникают при формировании покрытий из эпоксидных смол по сравнению, например, с полиэфирными олигомерами. Резкое нарастание внутренних напряжений при формировапии эпоксидных покрытий нельзя объяснить различиями в усадке или разности коэффициентов линейного расширения иленки и подложки. Коэффициент линейного расширения эпоксидных покрытий разного химического состава, как видно из табл. 2.1, изменяется в пределах от (45— б5)10 1/°С, а усадка не превышает 2%. Для покрытий на основе ненасыщенных полиэфиров в зависимости от их химического состава коэффициент линейного расширения больше (70—200) 10" , 1/°С, а усадка при отверждении составляет 10—12%. Коэффициент линейного расширения покрытий из эластомеров, например бутадиена и его производных, значительно больше и изменяется в пределах (130—216) 10- 1/°С. Внутренние напряжения, возникающие при термическом отверждении покрытий на основе эластомеров, мало отличаются от напряжений, возникающих в условиях формирования их при 20 °С. Все это свидетельствует о том, что решающую роль в определении величины внутренних напряжений играет специфика структурных превращений при формировании полимерных покрытий, определяющая скорость протекания релаксационных процессов. Характер структурообразования в самом общем виде прежде всего определяется строением молекул пленкообразующих и их конформаций, спецификой образуемых [c.55]

    Приведение полимерного раствора в контакт с подложкой обусловливает возникновение межмолекулярного (адгезионного) взаимодействия, которое может иметь различную природу (ван-дер-ваальсовы силы, водородные связи, донорно-акцепторное взаимодействие и т. д.). При этом на твердых поверхностях возможна адсорбция полимера из раствора. В отличие от адсорбции низкомолекулярных веществ адсорбция полимеров в значительной степени определяется большой длиной молекул, продол-жительньге временем существования в растворах надмолекулярных флуктуационных образований и полидисперсностью образцов полимера. Вследствие этого в зависимости от концентрации полимера в растворе и качества растворителя формируются различные адсорбционные слои, изменяющиеся во времени. Подробно адсорбция полимеров, а также комплекс вопросов, связанных с поверхностными явлениями в полимерах, включая адгезию полимеров к подложкам, рассмотрены в работах [107— 111]. По данным этих работ, твердая поверхность ограничивает подвижность молекул как вследствие геометрических затруднений, так и в результате энергетического взаимодействия. Это влияние твердой поверхности может распространяться в глубь жидкой фазы на расстояние до 10 мкм. Это приводит к изменению плотности упаковки макромолекул полимера, скорости протекания релаксационных процессов и характера структурообразования. [c.67]

    Формирование покрытий из кремнийорганических олигомеров с большой концентрацией фенильных групп на эластичном подслое позволяет наряду с уменьшением внутренних напряжений в 2—3 раза повысить адгезию покрытий путем формирования в них упорядоченной структуры. Причина этого явления обусловлена тем, что структурные элементы подслоя из мелами-ноалкидного олигомера играют при этом роль центров структурообразования, а высокоэластические свойства подслоя обеспечивают релаксацию внутренних напряжений. Нанесение эластичного подслоя на подложку позволяет сформировать однородную и упорядоченную структуру также в покрытиях из расплавов кристаллических полимеров. При получении покрытий из расплавов полиэтилена низкого давления взаимодействие полимера с поверхностью подложки приводит к резкому замедлению подвижности структурных элементов, препятствуя формированию упорядоченной структуры в слоях покрытий, прилегающих к подложке (рис. 3.2), в то время как в слоях, граничащих е воздухом, формируется упорядоченная структура ламелярного типа, образующая сетку. Покрытия с такой неоднородной структурой характеризуются высокими внутренними напряжениями, вызывающими их самопроизвольное отслаивание в процессе эксплуатации. Формирование однородной упорядоченной структуры и резкое понижение внутренних напряжений в системе наблюдаются при использовании в качестве подслоя покрытий с оптимальной толщиной, из эластомерных систем. При этом в слоях, граничащих с подслоем и воздухом, формируется сетчатая структура из ламелей, а внутренние напряжения понижаются до десятых долей мегапаскалей, что характерно для эластичного подслоя. Применение эластичного подслоя позволяет резко понизить внутренние напряжения при формировании покрытий из ненасыщенных полиэфиров [51], эпоксидов [69] и растворов полимеров [89]. [c.67]

    Формирование пленок на под.южке вносит свои специфические особенности в механизм структурообразования и кинетику протекания поли-.меризационных процессов, что оказывает сушественное влияние на свойства покрытий. Исследование влияния прочности взаимодействия на границе пленка - подложка на структуру и свойства покрытий, скорость протекания полимеризационных процессов и степень их завершенности. кинетику нарастания и релаксации внутренних напряжений изучено на примере модельных систем олигоэфирмалеинат-аэросил. моде.тирующий поверхность стеклянной подложки [26], Природа связей на границе пленка - подложка исс.тедовалась методом ИКС по специально разработанной методике [121]. [c.141]

    В качестве наполнителей широко применяются диоксид титана, кварцевый песок, цемент, каолин, древесная мука и другие природные материалы. Большинство из них являются активными по отношению ко. многим олигомерам. Исследовалось влияние активных наполнителей на структурообразованне в ненасыщенных олигоэфирах и процесс формирования покрытий на их основе [25]. Адгезия полиэфирных покрытий к подложкам, химический состав которых аналогичен указанным наполнителям, является весьма высокой и в ряде случаев превышает прочность самих подложек. С учетом этого следовало ожидать, что при введении активных наполнителей значительно повысится прочность при растяжении наполненных покрытий. Однако полученные экспериментальные данные свидетельствуют о резком ее понижении при одновременном нарастании внутренних напряжений с увеличение-М концентрации наполнителя в олигомере. Для покрытий, содержащих более 25 ,, (об.) активных наполнителей, внутренние напряжения становятся соизмеримыми с прочностью пленок при растяжении, что приводит к самопроизвольному растрескиванию наполненных покрытий. При одинако- [c.163]


Смотреть страницы где упоминается термин Подложки процесс структурообразования: [c.146]    [c.110]    [c.31]    [c.141]    [c.150]    [c.127]    [c.194]    [c.251]    [c.29]   
Структура и свойства полимерных покрытий (1982) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Структурообразование



© 2025 chem21.info Реклама на сайте