Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурообразование механизм

    В монографии рассмотрены современные представления о природе твердения вяжущих веществ, включая вопросы состава тампонажных растворов, стехиометрии продуктов гидратации портландцемента, физико-химических основ процессов формирования дисперсных структур вяжущих веществ. Особое место занимают исследования механизма процессов структурообразования в дисперсиях минеральных вяжущих — трехкальциевого силиката, трехкальциевого алюмината, трехкальциевого алюмината в присутствии гипса и наполнителя, тампонажных цементных дисперсий. [c.6]


    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]

    Представление о стадиях структурообразования и механизме процессов, происходящих при твердении вяжущих веществ, дает возможность рассмотреть с новых позиций особенности формирования дисперсной структуры этих систем при введении глинистых добавок различной кристаллохимической природы. [c.119]

    Возбуждение структурных элементов надмолекулярных структур неньютоновских нефтей приводит к их разрушению и, как следствие, к уменьшению структурной вязкости. Под действием переменного электромагнитного поля происходит уменьшение предельного напряжения сдвига, такое изменение сохраняется некоторое время после снятия поля [71], аналогичный эффект наблюдался при облучении мангышлакской нефти ультразвуком [72]. Изучение механизма структурообразования в нефтях позволяет судить о природе связей, возникающих между частицами [73], но работ в этом направлении немного. Образование надмолекулярных структур определяет не только реологические параметры нефти и ее фракций, но и оказывает сильное влияние на результаты переработки последних. [c.21]


    Механизм процесса структурообразования [c.106]

    В этих условиях на структурообразование, складывающееся из процессов кристаллизации новообразований и возникновения контактов между ними, накладывается одновременно происходящий процесс разрушения контактов. При коагуляционном механизме структурообразования разрушенные контакты сохраняют способность к обратимому восстановлению, поэтому структурно-механические суспензии в большей степени зависят от числа и дисперсности новообразований. [c.110]

    Наблюдали фазовый переход II рода и два фазовых перехода I рода, например для ЧХУ при температурах 59,5 39,7 32,7 С. Это свидетельствует о сложном механизме структурообразования и различных механизмах межмолекулярных взаимодействий в исследованных системах. [c.82]

    Несмотря на некоторое сходство кривых, отражающих зависимости в присутствии испытуемых остатков, механизм структурообразования при этом различен. Так, в случае малых концентраций гудрона арланской нефти в системе образуются сложные структурные единицы небольших размеров. Кинетическая подвижность и устойчивость подобных структурных образований достаточно высока. За счет этого затруднено налаживание прочных и устойчивых связей между растущими надмолекулярными образованиями н-парафинов, что приводит к самопроизвольным спонтанным разрушениям кристаллической решетки и способствует понижению температур плавления и кристаллизации системы. [c.168]

    Наибольшее число работ было посвящено изучению химических реакций, происходящих при взаимодействии различных минералов, содержащихся в вяжущих веществах, с водой. Изучалось влияние состава среды, различных добавок, температуры и других факторов на ход этих реакций, а также на состав, структуру и свойства продуктов взаимодействия. Так, П. А. Ребиндер и его школа исследовали физико-химические основы процессов структурообразования неорганических вяжущих веществ, а В. Б. Ратинов изучил механизм их гидратации при этом было показано значение для этих процессов общих законов физико-химической механики. [c.172]

    В настоящее время изданы обобщающие монографии, касающиеся физико-химической механики контактных взаимодействий металлов, дисперсий глин и глинистых минералов. Однако в области вяжущих веществ, в частном случае тампонажных растворов, такие обобщения практически отсутствуют. В этом направлении накоплен большой экспериментальный материал, который изложен в разрозненных статьях, в специальных журналах, информационных изданиях. Уже сейчас высказан ряд различных гипотез и предположений о механизме формирования дисперсных структур в твердеющих системах, которые требуют однозначной трактовки с позиций физико-химической механики с использованием данных об этих процессах, получаемых с помощью различных физических, физико-химических и других методов исследований. Поэтому, наряду с изданием монографии С. П. Ничипоренко с соавторами Физико-химическая механика дисперсных минералов , немаловажное значение имеет издание настоящей книги. Исходя из имеющихся экспериментальных данных в книге сформулированы некоторые принципы и закономерности формирования дисперсных структур на основе вяжущих веществ. Конечная задача физико-химической механики заключается в получении материалов с требуемыми свойствами и дисперсной структурой, с высокими прочностью, термостойкостью и долговечностью в реальных условиях их работь и в научном обосновании оптимизации технологических процессов получения тампонажных растворов и регулировании их эксплуатационных показателей. Для этих целей широко используется обнаруженный авторами в соответствии с кривой кинетики структурообразования цементных дисперсий способ их механической активации, который получил вполне определенную трактовку. В отношении цементирования нефтяных и газовых скважин разработаны глиноцементные композиции с применением различного рода поверхностно-активных веществ, влияющих на процессы возникновения единичных контактов и их прочность в пространственно-коагуляционной, коагуляционно-кристаллизационной и конденсационно-кристаллизационной структурах. [c.3]

    Для решения основных задач физико-химической механики необходима разработка двух проблем, которые сводятся к изучению физикохимических закономерностей и механизма 1) деформационных процессов, завершающихся разрушением данного твердого тела в зависимости от его состава и структуры, влияния температуры и внешней среды и 2) процессов структурообразования, т. е. развития пространственных структур, образующих твердое тело с заданными механическими свойствами. Оба процесса изучаются во времени и кинетические закономерности здесь решающие. [c.210]

    Таким образом, механизм застудневания и механизм коагуляции коллоидов аналогичны. Поэтому старый термин — застудневание— предложено заменить (Ребиндер) более общим, выражающим и механизм явления коагуляционное структурообразование. [c.230]


    Учитывая, что механизм застудневания и коагуляции имеет много общего, в последнее время предложено термин застудневание заменить более общим названием коагуляционное структурообразование . [c.235]

    Изучая связь механических свойств дисперсных систем и материалов с их структурой и явлениями, происходящими на границах раздела фаз, физико-химическая механика разрабатывает на этой основе новые пути управления структурой и механическими свойствами твердых тел и материалов. П. А. Ребиндер так определял главные задачи физико-химической механики Они сводятся к изучению фи-зико-химических закономерностей и механизма деформационных процессов и разрушения твердого тела (в зависимости от его состава и структуры, влияния температуры и внешней среды) и процессов структурообразования (развитие -пространственных структур, образующих твердое тело с заданными механическими свойствами) . [c.307]

    В заключение рассматриваются вопросы совершенствования технологии цементирования скважин. Следовательно, новый метод физико-химической механики дает возможность уяснить механизм твердения вяжущих веществ, сделать существенный шаг в научном обосновании регулирования процессов структурообразования цементно-водных дисперсий и их практического использования. [c.6]

    Вместе с тем идея о распаде цементных зерен при быстром взаимодействии с водой способствовала развитию теории твердения, особенно вопросам структурообразования, а именно, непременного возникновения коагуляционных структур в дисперсии цемента на ранних стадиях твердения. Представления о начальном периоде коагуляционного структурообразования, независимо от особенностей трактовки механизма процесса гидратации, в эти годы развивались многими учеными как в СССР, так и за рубежом [56, 76, 82, 91, 95—100, 120]. Эти представления, особенно в связи с совершенствованием методов управления свойствами дисперсных структур [98], являются весьма важными. В работах Полака доказана необходимость предварительного коагуляционного сцепления частиц на близком расстоянии при любом последующем способе срастания кристаллов новообразований [114—117]. [c.37]

    А. Ф. Полак, разрабатывающий теоретические основы технологии бетона, показал [114—117, 145], что обоснованное управление процессом кристаллизации, исключающим предварительные напряжения при срастании кристаллов, могло бы привести к увеличению прочности бетона в пять — восемь раз. Вместе с тем разработка методов управления свойствами дисперсных структур, независимо от их назначения, теснейшим образом зависит от глубокого понимания механизма гидратации и структурообразования. В этом направлении и развивались наши исследования, отправной точкой для которых послужило открытие И. Г. Гранковским [146, 147] четырех стадий кинетики структурообразования...... [c.41]

    ИССЛЕДОВАНИЕ МЕХАНИЗМА ПРОЦЕССОВ СТРУКТУРООБРАЗОВАНИЯ В ДИСПЕРСИЯХ МИНЕРАЛЬНЫХ ВЯЖУЩИХ [c.74]

    Таким образом, исследование влияния органических веществ на структурообразование цементных дисперсий [300] в целом подтверждает выдвинутый нами механизм формирования простран- ственных дисперсных структур на ранних стадиях. [c.115]

    В связи с этим на основании полученных нами экспериментальных данных и анализа отечественной и зарубежной литературы [205—300] необходимо рассмотреть механизм процесса структурообразования цементно-водных дисперсий в начальных стадиях. После смешения вяжущего (портланд-цементного клинкера) с водой начинается процесс его растворения и уже через 10—15 мин частички клинкера покрываются пленкой гидратных новообразований. [c.192]

    Описание реологического поведения неньютоновских жидкостей весьма проблематично из-за разнообразия и сложности процессов, сопровождающих структурообразование. В связи с этим Ребиндером были заложены основы новой пограничной дисциплины - физико-химической механики [64], выдвигающей следующие задачи - выявление механизмов и закономерностей физико-химических процессов образования разного рода структурированных систем и конструкционных материалов, а также определение зависимостей их механических параметров от различных факторов. [c.50]

    Детальное исследование механизма влияния асфальтенов, смол, различных групп углеводородов на процессы структурообразования позволит наряду с выбором оптимальной дисперсной структуры битума осуществить выбор оптимальных структурообразующих компонентов. [c.241]

    Теоретический и практический интерес представляют способы получения изделий из сухого порошка дисперсного гипса без обводнения системы и введения структурообразующих добавок. В условиях комплексного воздействия высокого давления и температуры в едином технологическом цикле структурообразование системы происходит по твердофазовому механизму с пластическими деформациями кристаллов и их спеканием . [c.37]

    Кинетика структурообразования промывочных жидкостей в пористой среде практически не освещена в литературе и представляет интерес с научной и практической точек зрения. Информация подобного рода необходима для анализа взаимодействия компонентов раствора с горной породой, характера возникающих при этом надмолекулярных структур и механизма формирования изолирующих свойств. В прикладном аспекте данные о скорости формирования прочной пробки раствора в данных условиях, продолжительности кольматации и деструкции, соотношении этих показателей со временем контакта раствора с породами продуктивной толщи при проводке скважин дают технологу возможность более обоснованного выбора типа раствора и корректировки его рецептуры. [c.11]

    Для направленного совершенствования качества технологических связок проведены исследования по выяснению механизма совместного структурообразования парафинов с ПАВ (СЖК, спирты и др.), так как пчелиный воск состоит из смеси кислот, спиртов и эфиров. [c.14]

    Исследование химических превращений при нагревании карборансодержащих резолов и соответствующих им резитов показало, что в интервале 5С)-200 °С структурообразование карборансодержащего олигомера протекает по обычному для резолов механизму. При 200-300 °С и выше карборановые группы резитов претерпевают заметные химические превращения, глубина которых существенно зависит от условий нагревания (воздух, вакуум) [163]. Полагают, что именно превращения по карборановым группам резитов обуславливает их повышенную термическую устойчивость и выход коксового остатка с высокой массой по сравнению с известными полимерами. [c.276]

    Перечисленные свойства в основном определяют преимущества и недостатки воды как бурового раствора. К преимуществам волы относятся 1) повышение показателей работы долот благодаря созданию на забое относительно низкого гидростатического и дифференциального давления, высоким охлаждающей и фильтрационной способностям, поверхностной активности 2) уменьшение потерь напора на преодоление гидравлических сопротивлений в циркуляционной системе вследствие низкой вязкости, отсутствия сопротивления сдвигу и, таким образом, достижения высокого коэффициента наполнения цилиндров буровых насосов, возможности подведения к забойному двигателю и долоту большей мощности 3) удобство очистки от шлама и газа на поверхности благодаря отсутствию структурообразования, в связи с чем не требуется специальных очистных механизмов, возможно освобождение от шлама в больших отстойных земляных амбарах 4) достаточно высокий уровень очистки забоя и ствола скважины от шлама в результате турбулентности течения и низкой вязкости, малому содержанию твердой фазы 5) отсутствие прихватов бурильной колонны, вызванных липкостью фильтрационной корки 6) облегчение условий работы буровой бретады 7) дешевизна и недефицитность в большинстве районов бурения 8) возможность повышения при необходимости плотности до 1200 кг/м введением солей. [c.42]

    При преобладаюилем конденсационно-кристаллизационном механизме структурообразования разрушенные контакты не восстанавливаются и на структурно-механические свойства большое влияпие ок зыиает соотношение скоростей процесса разрушения контактов и образования новых. Если в единицу времени разрушается меньше контактов, чем возникает новых, то структурномеханические свойства суспензии возрастают (эффективная вязкость увеличивается). Если поступление новообразований, а следовательно, и образование новых контактов происходит с недостаточной скоростью, то в результате преобладающего процесса разрушения контактов структурно-механические свойства суснензн1Г снижаются, суспензия разжижается . [c.110]

    Механизм действия ПАВ заключается в адсорбции на поверхности частиц исходного вяжущего вещества и новообразований (в первую очередь на активных центрах этих поверхностей), в препятствии контактообразованню и замедлении структурообразования. [c.113]

    Для регулирования ироцесса структурообразования применяют вибрационные, ультразвуковые, кавитационные, электрогидравли-ческие, электромагнитные, электрохимические и другие воздействия.. Все они направлены на ускорение процесса структурообразования и улучшение свойств образующегося цементного камня. Механизм их действия заключается в разрушении экранирующих пленок продуктов гидратации вокруг зерен цемента, препятствующих массообмену между зоной реакции и окружающей жидкой фазой п замедляющих тем самым процесс гидратации. Другое назначение этих методов состоит в разрушении коагуляционных и непрочных конденсационно-кристаллизационных контактов, образующихся на ранней стадии твердения. При этом улучшаются реологические свойства цементной суспензии (повышается ее подвижность) и улучшаются условия образования конечной структуры. [c.115]

    Экстремальное изменение термодинамических параметров смесей высокомолекулярных компонентов нефтяных систем объясняется на основе представлений, согласно которым при малых добавках трикозана структурообразование смеси определяется кристаллизацией наиболее высокоплавкого компонента смеси — нафталина [167]. Ассоциация нафталиновых молекул и сольватация ими асфальтенов сопровождается вытеснением примесных молекул трикозана на границу растущего структурного элемента. Такое концентрирование и сжатие молекул или ассоциатов парафина приводит к резкому уве личению теплоты плавления кристаллов на участке аб (рис. 6.10) и к исчезновению модификационных переходов. Научастке бв (рис. 6.10), очевидно, происходит расслоение системы с образованием несвязанных друг с другом плотноупакованных надмолекулярных структур парафина. Термодинамические данные, полученные на модельных смесях, подтверждают механизм структурообразования и изменения физико-химических свойств в реальных парафинонаполненных нефтяных системах. Из данных рис. 6.10 можно предположить, что на участке кривой вг происходит распад парафиновых структур и включение молекул трикозана в [c.155]

    Синтетические депрессоры представляют собой соединения, включающие один или несколько алифатических радикалов и полярные группы. При синтезе депрессорных присадок обычно получается смесь, содержащая молекулы одного класса, различающиеся прежде всего по молекулярной массе [175, 176]. Показано [177], что депрессорная активность поверхностно-активных веществ одного гомологического ряда по отношению к высокопарафинистым нефтяным фракциям изменяется по-раз-ному в зависимости от длины алкильной цепи. При этом, как правило, невозможно установление корреляции между параметрами фазовых переходов в НДС и депрес-сорной активностью поверхностно-активного вещества. Несмотря на это представляется возможным детализировать в некоторой степени механизм взаимодействия поверхностно-активных веществ с компонентами нефтяных систем, в частности рассмотреть изменение при этом структурообразования в них. [c.157]

    Таким образом, изменение термодинамических параметров фазовых переходов и-парафинов в присутствии синтетических депрессоров ДЦА связано с изменением характера структурообразования в системе. Калориметрические исследования показали, что действие депрессоров может проявляться по механизму сольватации или сокристаллизации. Сольватация молекул и частиц ДЦА тормозит образование ассоциатов молекул нормальных парафинов, а сокристаллизация эффективно предотвращает образование объемных структурных сеток в растворах. Депрессорное действие ДЦА в парафинистых растворах является комплексным и, регулируя состав ДЦА, можно наиболее эффективно воздействовать на конкретную депресси-руемую систему. [c.164]

    На базе проведенных исследований разработаны модельные представления, качественно и в некоторой степени количественно объясняющие процессы структурообразования в нефтяных дисперсных системах и механизм действия модификаторов их структуры, представляющие основу пригщипов подбора ингибиторов парафиноотложения и депрессорных присадок для высокозастывающих нефтей и газовых конденсатов. [c.247]

    Из теоретических вопросов упомянем о концепции двойного электрического слоя и электрокинетическом потенциале. Идея двойного электрического слоя на границе двух фаз была выдвинута более 100 лет назад физиком Квинке для объяснения механизма открытого им потенциала протекания. Эта идея была широко использована в различных областях науки, в частности в физике (теории поля и электростатике), а также в электрохимии. Понятие об электрокинетическом потенциале было введено Фрейндлихом и Смолуховским в начале настояш его столетия и было также широко применено для освещения многих коллоидно-химических и электрохимических проблем, где ставился вопрос о природе и свойствах поверхностных слоев, разделяющих отдельные фазы, с учетом их взаимодействия. Электрокинетический потенциал играет большую роль, как известно, в вопросах устойчивости суспензоидных коллоидов, коагуляции, пептизации, в учении о структурах и структурообразовании, в явлениях [c.5]

    Сознательный, т. е. научно обоснованный синтез прочности или, вернее, носителя прочности реального твердого тела — проблема новых рациональных строительных и конструкционных материалов в современной технике. Она прежде всего и определяет актуальность физико-химической механики, ее выдающееся прикладное значение. Ученые физнко-химнки до последнего времени обычно относились к этой важной проблеме пренебрежительно, считая, что ее разработка — дело технологов и может проводиться эмпирически, без участия физико-химической науки. Со своей стороны, технологи, оторванные от исследователей — механиков и физико-химиков, успешно решали лишь отдельные узкие вопросы, обращаясь к физико-химии только для того, чтобы использовать новые методы измерения. Таким образом, основные задачи не были даже правильно поставлены, не было физико-химических представлений о существе процессов деформирования и разрушения, с одной стороны, и структурообразования — с другой. Даже не выдвигалась проблема установления общих закономерностей в этой важнейшей области науки и практики. Отсутствие современных физико-химических представлений о существе и механизме процессов приводило к техническому формализму в его худшем виде творческое научное исследование подменялось эмпирическими рецептурными сведениями на основе давно устаревших взглядов. Если в области металлов и новых сплавов, а также полимеров и пластиков здесь уже довольно много сделано, то основные проблемы неметалличргких мятрриялов на основе ионных кристаллов (цементы и бетоны, керамика) до последнего времени оставались нерешенными. [c.209]

    Огромное практическое значение микрогетеро-генных и грубодисперсных систем общеизвестно различные эмульсии, пены и пенопласты, кремы, всевозможные порошкообразные вещества (цементы, пигменты, наполнители, сажа, инсектофунгиси-ды и др.), волокнистые системы, изоляционные материалы, многие виды искусственной кожи приобретают все большее значение в народном хозяйстве. Такие характерные процессы для микрогетеро-генных систем, как флотация, гравитационное обогащение руд, фильтрация, усиление каучуков и пластмасс, пропитывание пористых систем, гранулирование порошков, получение пленок из дисперсий высокополимеров и эмульгирование, могут быть успешно рассмотрены только в курсе коллоидной химии на основе современных представлений о защитных факторах, агрегативной устойчивости дисперсных систем, механизме усиления, структурообразовании и т. д. [c.4]

    В книге использованы результаты, полученные в последние годы в работах, которые выполнялись на кафедре коллоидной химии МГУ и в лаборатории физико-химической механики Института физической химии АН СССР под руководством и при участии авторов и ряда наших товарищей по этим коллективам Ю. В. Горюнова, Н. В. Перцова, Б. Д. Сумма (по смачиванию и кинетике распространения жидкой фазы) Е. П. Андреевой, В. П. Ваганова, С. И. Конторович, О. И. Лукьяновой, Р. К. Юсупова, В. В. Яминского (по взаимодействию частиц дисперсных фаз и механизму структурообразования) Л. А. Кочановой, [c.3]

    IV. Основы физико-химической механики. Здесь приведены способы реологического описания механического поведения различных конденсированных систем, изложение основных закономерностей и механизма взаимодействия частиц дисперсных фаз и процессов структурообразования в различных типах пространственных структур, возникающих в дисперсных системах, и, далее, анализ закономерностей диспергирования и разрушения реальных твердых тел и влияния поверхностно-активной среды на эти процессы (эффект Ребин-дера). [c.13]

    Для более детального исследования влияния твердых иарафи-иов иа процессы структурообразования при термоокислительиом старении была изучена кинетика измеиения когезии битулюв с разным содержанием парафина иосле выдерживания тонкого (5 мк) слоя ири 160° С (рис. 31). Когезия битумов II тииа, содержащих большое количество (7 и 9%) парафинов, нарастает медленнее, чем когезия малопарафинистых битумов (рис. 31, а). Углеводороды парафинового ряда более стойки против воздействия молекулярного кислорода, чем ароматические углеводороды. Поэтому в процессе окисления доля их в общем количестве углеводородов возрастает. Это сиособствует замедлению превращения углеводородов в смолы, определяющему механизм старения битумов [c.146]

    Для повышения водостойкости полученных материалов в качестве добавки, регулирующей уровень пересыщения жидкой фазы, предложено вводить компонент, гидролизующийся при смешении с водой с выделением гидроксида кальция шлакопортланд-цемент, пуццолановый цемент, гидравлическая известь и др. Механизм структурообразования остается прежним, как и в случае введения извести, однако появляются гидросиликаты кальция. Образование высокосульфатной формы гидросульфоалюмината кальция становится невозможным из-за присутствующих в фосфогипсе кислых примесей [71]. [c.33]


Смотреть страницы где упоминается термин Структурообразование механизм: [c.9]    [c.434]    [c.14]    [c.416]    [c.111]    [c.108]    [c.163]    [c.13]   
Минеральные удобрения и соли (1987) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Структурообразование



© 2025 chem21.info Реклама на сайте