Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные представления об электрических свойствах полимеров

    Глава 1 ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ ОБ ЭЛЕКТРИЧЕСКИХ СВОЙСТВАХ ПОЛИМЕРОВ [c.9]

    По электрическим свойствам полимеры подразделяются на диэлектрики, полупроводники и электропроводящие материалы. К диэлектрикам относятся полимеры, молекулы которых не содержат легко диссоциирующих на ионы групп и сопряженных двойных связей вдоль макроцепи. Электрическая проводимость у этих полимеров при комнатной температуре не превышает 10 См/м. Для полимерных полупроводников (7=10 ч-Ч-10 См/м) характерно наличие сопряженных двойных связей или комплексов с переносом заряда. Электропроводящие полимерные материалы обычно являются композициями полимер— проводящий наполнитель. Перенос электричества в полимерных материалах может осуществляться электронами, ионами или моль-ионами. Идентификация типа носителей заряда и механизма их перемещения — весьма существенный вопрос для практических применений полимеров. Поэтому ниже рассматриваются основные представления о моделях переноса электрического заряда электронами и ионами. [c.40]


    Основными задачами теории, описывающей вязкоупругое поведение полимеров, является установление зависимости этих параметров от частоты и температуры, а также зависимости от химического строения и физической структуры. Существует несколько способов описания вязкоупругих свойств полимеров [1]. Одни из них основаны на использовании механических или электрических моделей, т. е. на применении методов электромеханической аналогии, другие — на использовании уравнений последействия Больцмана — Вольтерры [2, 3]. Один из возможных способов описания вязкоупругого поведения полимеров основан на теории упругости и некоторых представлениях термодинамики необратимых процессов [4]. [c.238]

    Изучение электрических свойств молекулярных твердых веществ долгое время было пасынком физики твердого тела. До разработки квантовомеханической теории физики и химики изучали макроскопические свойства — такие, как твердость, сжимаемость и проводимость — самых различных материалов. Кристаллические типы не были еще достаточно четко дифференцированы, а поскольку представления о твердом теле были весьма ограниченными, не были выбраны какие-либо вещества в качестве специфических моделей для изучения того или иного из этих свойств. После появления зонной теории твердого тела наибольшее значение приобрели микроскопические свойства веществ, однако молекулярные твердые тела остались в стороне от рассмотрения. Одной из причин создавшегося положения могло явиться то, что не нашлось вещества, которое подошло бы в качестве простой теоретической или экспериментальной модели. Для металлов моделью мог служить литий или натрий, для ионных кристаллов — хлористый натрий, для полупроводников — германий и кремний. Простейшие же твердые вещества молекулярного характера, например монокристаллы водорода, гелия, аргона или неона, малодоступны и их трудно изучать. Даже сера и иод — первые из элементов периодической системы, образующие молекулярные кристаллы при комнатной температуре,— не привлекли серьезного внимания, так как по своей природе они довольно сложны. Другая очень веская причина относительного пренебрежения молекулярными твердыми веществами кроется в трудности практического применения этих веществ. Чрезвычайная мягкость, малая прочность на разрыв и низкая электропроводность делают их мало интересными для инженеров. Положение изменилось с появлением полимеров, но они нашли применение в электротехнике лишь как изоляторы, и поэтому измерения, описанные в литературе, носили прикладной характер и касались определения в основном изоляционных свойств, а не проводимости. [c.9]


    Важным классом органических веществ являются полимеры, поэтому следовало бы уделить внимание их электрическим свойствам, а также проводимости веществ, подвергшихся пиролизу [133]. Однако в данной главе мы не в состоянии рассмотреть эти вопросы. Недавно были обнаружены некоторые органические вещества с высокой проводимостью. Это в основном донорно-акцепторные комплексы, которые, по нашему мнению, заслуживают особого рассмотрения. В заключение нами дан краткий обзор существующих теоретических представлений. [c.12]

    Третье издание (2-е изд. вышло в 1977 г.) переработано в соответствии с результатами исследований последних лет. Изложены современные теоретические представления и обобщены экспериментальные данные об основных электрических свойствах полимеров электрической проводимости, электрической прочности, диэлектрических потерях и проницаемости, а также о полимерных эл .-ктретах, пьезоэлектриках. Показано применение методов исследования электрических характеристик для оценки молекулярного и надмолекулярного строения полимеров. [c.2]

    Особый интерес, естественно, представляют свойства фенил-силиконовых полимеров со сдвоенными цепями. От таких полимеров следует ожидать повышенной термо- и химической стабильности, поскольку для деструкции макромолекулы необходим разрыв более чем одной связи. Полифенилсилсесквиоксановый полимер растворим во многих обычных растворителях, причем из этих растворов получают прочные прозрачные пленки. Ориентированные пленки, полученные вытяжкой в растворителе, в котором полимер набухает, некристаллические, но обладают, по данным рентгеноструктурного анализа, дальним порядком [18]. Температура стеклования аморфного полимера составляет 300° С [56, 57], а по другим данным — более 400° С [6]. Подробные исследования свойств растворов полимера показали, что при молекулярном весе 10 000—50 ООО макромолекулы представляют собой вытянутые цепи, а при молекулярном весе 50 ООО—3 ООО ООО молекулы свернуты в клубки [57, 65, 66]. Прочность на разрыв полимера составляет 250—420 кгс/см [18, 24, 40], а разрывное удлинение 3—16%. При 250° С полимер имеет прочность на разрыв 80 кгс/см , а удлинение 12%, поэтому температура стеклования должна быть выше 250° С. Электрическая прочность полимера составляет 6,02 кВ/25 мк [24]. По-видимому, высокая термостойкость подтверждает теоретические представления о повышенной стабильности лестничных полимеров. На воздухе уменьшение веса полимера начинается при 500° С [6, 18, 36]. Было отмечено также, что при нагревании до 900° С основная цепь не деструктирует, а уменьшение веса обусловлено разложением органических фрагментов макромолекулы [6]. [c.327]

    Изложена теория и практика получения и применения электретов — тел, способных длительно сохранять электрические заряды. Во втором издании (первое вышло в 1976 г.) более подробно освещены современные представления о природе электретного эффекта полимеров и рассмотрена связь диэлектрических свойств полимеров с электретными. Материал дополнен яовыми сведениями об инжекции носителей зарядов, изменении структуры полимеров под действием электрического поля, о пироэлектрических свойствах полимерных электретов. Изложены основы применения электретно-термического анализа для изучения свойств электретов и для исследования релаксационных явлений в полимерах. Описаны основные области применения электретов. [c.2]


Смотреть страницы где упоминается термин Основные представления об электрических свойствах полимеров: [c.2]    [c.259]   
Смотреть главы в:

Электрические свойства полимеров Издание 3 -> Основные представления об электрических свойствах полимеров

Электрические свойства полимеров Издание 3 -> Основные представления об электрических свойствах полимеров




ПОИСК





Смотрите так же термины и статьи:

Электрические свойства



© 2025 chem21.info Реклама на сайте