Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры практическое применение

    Возможность практического применения полисилоксанов впервые показана в СССР К. А. Андриановым им же разработаны способы получения этих кремнийор-ганических полимеров. — Прим. редактора]. [c.184]

    Каково практическое применение растворов полимеров Рассмотрите факторы, обеспечивающие агрегативную устойчивость дисперсных систем прн стабилизации их полимерами. [c.155]


    Из перечисленных полимеров практическое применение для изготовления высокотермостойких волокон и пленок нашли поли-4-фе-нил-1,2,4-триазолы (№ 27—29). [c.508]

    Алюминийорганические и оловоорганические полимеры. Из алюминийорганических полимеров практическое применение находят высокомолекулярные соединения, в которых алюмоксановые группы О—А1—О сочетаются с силоксановыми. [c.407]

    Имеются сообщения [87] о практическом применении радиации в реакциях полимеризации непредельных углеводородов. Указывается, например, что в результате воздействия ядерных излучений на реакции полимеризации этилена получается полимер, обладающий совершенно новыми свойствами. [c.73]

    Широкую известность и практическое применение в качестве химически стойкого обкладочного материала получили полимеры изобутилена с высоким молекулярным весом (до 200000),. изготовляемые действием на изобутилен, при низких температурах таких катализаторов, как хлористый алюминий, хла-ристый титан, фтористый бор и другие, а также продукты совместной полимеризации изобутилена с изопреном—бутил-каучуки. [c.21]

    Из веш еств, обладающ,их свойствами вязкостных присадок, нашли практическое применение различные полимеры полиизобутилены, полиметакрилаты, виниполы, вольтоли и др. [c.157]

    С помощью химических реакций полимеризации и поликонденсации в настоящее время производят более тысячи разных видов полимеров. Практическое применение в технике находят пока несколько десятков из них. На их основе изготавливают сотни пластмасс различных марок, отличающихся по молекулярному весу, композиционному составу, способу изготовления и свойствам. [c.14]

    С целью получения эластичных или полуэластичных материалов, обладающих, наряду с достаточно высокими прочностными свойствами, повышенной морозостойкостью и хорошей адгезионной способностью, разработаны условия сочетания жидких каучуков с различными жесткими смолами. Практическое применение в отечественной технике нашли, например, композиции на основе жидкого полимера с концевыми изоцианатными группами и толуилендиизоцианатом [100]. Аналогичные композиции получены сочетанием полимеров с эпоксиуретановыми группами с промышленными эпоксидными смолами, а также сочетанием полимеров с акрилатуретановыми группами со стиролом или акрилатными смолами. Все композиции такого типа обладают хорошими литьевыми свойствами. [c.455]

    Практическое применение нашли макропористые катиониты, получаемые введением в реакционную массу в процессе полимеризации (или поликонденсации) инертного растворителя, который затем удаляется из объема полимера. Макропористые катиониты обладают повышенной механической, химической и термической стойкостью по сравнению с гелевыми, а наличие пор облегчает диффузию ионов к активным центрам. Однако выпускаемые промышленностью катиониты не могут быть применены при температурах выше 423 К. [c.26]


    Изопропилбензол — исходное сырье для производства таких ценных продуктов как фенол и а-метилстирол. На основе фенола получают гербициды и пестициды, нашедшие широкое практическое применение, эпоксидные смолы, фенолоформаль-дегидные полимеры, полиамидные волокна и многие другие продукты. и I- - - [c.228]

    В качестве вязкостных присадок используются различные полимерные продукты. Практическое применение получили полиизобутилен, полиметакрилаты, полимеры виниловых эфиров, в меньшей степени — полиалкил-стиролы, сополимеры углеводородные (например, сополимер изобутилена и изоамиленов — октол), производных метакриловой кислоты и азотсодержащих мономеров и ряд других. Некоторые полимерные присадки наряду со способностью улучшать вязкостные свойства масел обладают также депрес- сорными или моющими свойствами или теми и другими. [c.566]

    Реакции взаимодействия алкенов, с формальдегидом достаточно хорошо изучены, а продукты этих реакций находят большое практическое применение. В частности, образующиеся замещенные 1,3-диоксаны используются во многих отраслях промышленности и быта. Например, в качестве растворителей и разбавителей, полимеров, компонентов смазочных масел и топлив, ПАВ, компонентов красок и др. [c.179]

    Нитевидные кристаллы ( усы ) рассматривают как перспективный материал для армирования матриц из металлов, полимеров и керамики. Сверхвысокая прочность в широком диапазоне температур при малой плотности, химическая инертность по отношению ко многим матричным материалам, высокая жаростойкость и коррозионная стойкость нитевидных кристаллов оксидов алюминия и магния, карбида кремния делают их незаменимыми армирующими элементами. К сожалению, пока на пути их практического применения стоит много трудностей. Предстоит решить проблемы получения их в промышленном масштабе, отбора годных усов , ориентации их в матрице, методов формирования композиций с усами . [c.69]

    Поливинил бромид растворим в метилэтилкетоне, диоксане, пиридине, нитробензоле и набухает в толуоле, бензоле, ацетоне. Полимер отличается низкой химической стойкостью и потому не находит практического применения. Отщепление бромистого водорода наблюдается и при хранении полимера. С повышением [c.275]

    Высшие хлорированные парафины ( js— ia и С22—С25) нашли практическое применение в ряде отраслей промышленности, в том числе и в производстве полимерных материалов, применяемых в строительстве. Они часто используются в качестве пластификаторов при производстве поливинилхлоридных мягких изделий различного назначения (материалы для полов, трубы и шланги, пленки и искусственная кожа и др.). С этой целью применяют жидкие хлор-парафины с углеродной цепью, содержащей 15—18 и 23—25 углеродных атомов (содержание хлора соответственно 46—53 и 40— 42%). Стоимость поливинилхлоридных изделий при этом снижается без снижения качества. Жидкие хлорпарафины, не ухудшая физических свойств, придают полимерам огнестойкие свойства и повышают их стойкость к действию бензина и других растворителей. Они используются для пропитки тканей, бумаги, брезента, древесины и многих других материалов. Такая обработка придает им не только огнестойкость, но и гидрофобные и погодоустойчивые свойства. Хлорпарафины широко используются и для изготовления химически стойких водо- и огнезащитных красок на основе некоторых полимеров. Все это имеет важное значение для строительной индустрии. [c.99]

    Температурные интервалы фазовых и физических состояний определяют комплекс механических свойств и соответственно области практического применения полимера. Так, полимеры, находящиеся при комнатной температуре в кристаллическом (фазовом) или аморфные полимеры в стеклообразном (физическом) состоянии могут быть использованы в качестве пластиков или волокнообразующих материалов. Аморфные полимеры, находящиеся при комнатной температуре в высокоэластическом физическом состоянии, могут применяться в качестве каучуков для получения резиновых изделий. В вязкотекучем состоянии обычно осуществляют переработку (формование) полимеров в изделия. [c.143]

    Важное практическое применение алюминийтриалкилы имеют в качестве полимеризующих агентов при производстве некоторых полимеров (гл. ХП1). [c.177]

    Стереорегулярность полимера определяет его механические, физические и другие свойства. Например, высококристаллический полипропилен обладает высокопрочными механическими свойствами и прекрасной теплостойкостью. Он может применяться в качестве конструкционного материала. В то же время полипропилен с неупорядоченным строением (атактический) представляет собой мягкий материал, напоминающий каучук. Такой полипропилен не нашел до сих пор существенного практического применения, если не считать его использования в качестве дешевой добавки к дорожному асфальту. [c.377]


    Другой тип энергетических потерь в диэлектриках связан с электронной Рэл и атомной Рат поляризациями, обусловленными смещениями (ток смещения) под действием электрического поля электронов, ядер, ионов или атомных групп (резонансное поглощение). Для практического применения диэлектриков представляет интерес рассмотрение деталей перехода от установившейся полной поляризации при низких частотах к поляризации при оптических частотах, так как они непосредственно связаны с разделением поляризации при низких частотах на ее составляющие ориентационную и деформационную (атомную и электронную). Резонансные потери проявляются при частотах Ю —10 Гц (миллиметровая и инфракрасная области длин волн). Существование их у полимеров обусловлено наличием собственных колебаний атомных групп. Некоторые полосы поглощения в инфракрасной области связаны с трансляционными движениями диполей. Характер изменения потерь энергии при этом имеет сходство с соответствующими зависимостями при дипольной релаксации. Мнимая составляющая " обобщенной диэлектрической проницаемости е изменяется в окрестности резонансной частоты примерно так же, как и при дипольной релаксации (проходит область максимума), хотя потери энергии в этом случае имеют другую природу и требуют иного аналитического описания. В то же время диэлектрическая проницаемость е при дипольной релаксации и резонансном поглощении изменяется ио-разному. [c.178]

    Все это обеспечивает широкое практическое применение хлорированных полимеров в народном хозяйстве. [c.46]

    Полициклизация в растворе лишена многих недостатков, присущих твердофазным способам. Из общих соображений для гомогенной полициклизации можно ожидать повышения скоростей и степени завершенности реакции отпадает необходимость учета фазового состояния полимера нет опасности разрушения волокна и т. д. Препятствием к применению этого способа служит низкая растворимость полигетероариленов с циклами в цепи. Для повышения растворимости полимеров с гетероциклами можно прибегнуть либо к их химической модификации, либо к подбору сильнодействующих растворителей. Первый путь пока представляется менее перспективным из-за значительного снижения термических характеристик полимера. Практическое применение получила полициклизация в серной кислоте, олеуме и полифосфорной кислоте. Физическая характеристика этих растворителей приведена выше. В последние годы в лабораторной практике стали применять кислоты Льюиса и растворители сульфонового типа. Растворяющая способность серной и полифосфорной кислот связана с протонированием гетероатомов и ароматических ядер кислот Льюиса — с возникновением координационных связей между этими кислотами и гетероатомами и ароматическими ядрами полимера [62]. Наряду с высоким растворяющим действием эти соединения являются сильными дегидратирующими агентами, что собственно и определяет их применимость в качестве реакционной среды для полициклодегидратации. Помимо этого ПФК обладает и каталитическим действием [63]. Считают, что она образует соль с диаминами, способствует повышению реакционной способности электро-фильного углеродного атома карбонильной группы. Показано присутствие фосфора в цепи полимера. Комплекс ПФК с амином находится в равновесии со свободным амином [c.58]

    На основе фурановых полимеров практическое применение получила эмаль ФР-757 (ТУ 6-10-1517—75). Покрытие этой эмалью толщиной 60 мкм оказалось наиболее химически стойким в дихлорэтане в течение 1000 ч при 18—20 и 60 °С [82]. Эмаль ФР-757 наносится в несколько слоев методом облива или краскораспылителем вязкостью 13—25 с по ВЗ-4. До рабочей вязкости эмаль может разбавляться смесью этилового спирта и ацетона в соотношении 1 1. Сушка эмали должна производиться с постепенным подъемом температуры во избежание образования пузырей ввиду интенсивного выделения растворителя. Оптимальный режим сушки и нагрева эмали ФР-757 первый слой при температуре 20— [c.88]

    Интерес к использованию полимерных мембран объясняется их высокой селективностью, а также резким количественным и качественным развитием промышленности синтеза и п.ереработ-ки полимеров в 50—60-х годах. Это привело к тому, что наряду с такими традиционными массообменными процессами, как абсорбция, адсорбция, ректификация, все большее практическое применение находит мембранное разделение газовых смесей. [c.6]

    Среди различных способов синтеза селективных ионитов широкое практическое применение нашел способ полимераналогич-ных превраш,ений полимеров (сополимеров), не содержащих ионогенных групп. В качестве матриц для таких превращений используют сшитые дивинилбензолом (ДВБ) сополимеры стирола и его производных. [c.333]

    Промышленное производство этилбензола было организовано в 1936 г. В период Второй мировой войны в ряде стран широкое применение в качестве высокооктановой добавки для карбюраторных авиационных двигателей нашел кумол (изопропилбензол). С переходом авиации на реактивное топливо интерес к производству алкилбензолов продолжал возрастать. Это объясняется тем, что резко возросла потребность в ряде сырьевых источников, получение которых связано с алкилированием бензола и его гомологов. Например, из этилбензола получают стирол, который нашел широкое практическое применение, из кумо-ла—фенол, ацетон, а-метилстирол. Из диалкилбензолов синтезируют терефталевую кислоту и фталевый ангидрид. Сульфированием нонил- и додецилбензола производят сульфонаты — высокоэффективные поверхностно-активные вещества. Моно- и полиалкилнафталины —великолепные теплоносители, а их сульфонаты — эмульгаторы в производстве синтетического каучука. В широком масштабе проводится алкилирование бензола и нафталина тримерами и тетрамерами пропилена, димерами и три-мерами бутенов и пентенов, а также высшими олефинами. Алкилирование является перспективным процессом в связи с необходимостью разработки новых видов сырья для производства полимеров, синтетического каучука, новых компонентов топлив, присадок и масел. [c.6]

    Из многочисленных гетероцепных полимеров в настоящее время более подробно изучены и нашлн практическое применение следующие типы полимеров  [c.396]

    Как продукты алкилирования нафталина и тионафтена, так и углеводородфармальдегидные полиме,ры могут быть утилизированы в качестве компонентов низкосортных полимеров, а также как топливо. Продукты алкилирования более интересны, чем продукты конденсации с формальдегидом из-за большей термической стабильности, лучшей однородности свойств и состава. Однако практическое применение их ограничено. [c.293]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    При действии на этилен малых количеств кислорода при очень высоких давлениях (свьпне 600 ат) и температуре около 100° образуется смесь твердых полимеров, называемая полиэтиленом. Это насыщенные углеводороды с незначительно разветвленной цепью, содержащей примерно 1000 углеродных атомов. Полиэтилен находит практическое применение в качестве электроизоляционного материала, для изоляции кабелей н т. п., так как он устойчив к воздействию воды .  [c.68]

    Из тр ифтормонохлорэтилена СР2=СС1Р получают полимер, который обладает несколько иными свойствами, чем упомянутый выше (он термопластичен), и также находит практическое применение. [c.104]

    Наибольшее практическое применение находят блочный и эмульсионный методы полимери зации дивинила и его производных. Образование начального активного радикала и присоединение к нему отдельных мономерных звеньев может происходить в нескольких направлениях. В соответствии с этим макромолекула полимера представляет собой совокупность структурных единиц различного строения. Так, макромолекулы полибутадиена содержат звенья, присоединенные в положениях 1—4 и 1—2  [c.227]

    Полимеризацию хлористого винила в присутствии инициатора можно проводить блочным методом, в растворе и эмульсионным методом. Полимер нерастворим в исходном мономере и потому в случае блочной и эмульсионной полимеризации выделяется в виде осадка. Полимеризация винилхлорида блочным методом находит практическое применение для получения изделий, облада-юпщх прозрачностью в сочетании с высокой упругостью, вообще присущей поливинилхлориду. Болес распространен эмульсионный метод полимеризации. Реакционной средой служит вода, инициатором полимеризации является персульфат аммония или калия, эмульгаторами—мыла или натриевые соли алифатических или ароматических сул1рфокислот (С 2—С] ). В некоторых случаях в эмульсию добавляют восстановитель (например, гидросульфит или бисуль-( )ит натрия). При этом возрастает скорость распада инициатора [c.263]

    Практическое применение полимеров акриловой и метакриловой кислот ограничено вследствие их водорастворимости, высокой хрупкости н отсутствия текучести при нагревании. Однако эти полимерные кислоты представляют большой интерес как ис-ходн111е продукты для синтезов, так как элементарные звенья их содержат химич1 ски активные карбоксильные группы. На основе полимерных кис.ют синтезируют их многочисленные полимерные п )оизводные, получение которых во многих случаях невозможно непосредственной полимеризацией соответствующих мономеров. [c.327]

    Этот процесс нашел практическое применение для синтеза глицидных эфиров новолаков. Глицидиые эфиры новолаков легко вступают в реакцию с диаминами, двухосновными кислотами или двухатомными спиртами. В результате раскрытия эпоксидных звеньев образуются сетчатые полимеры  [c.388]

    Несмотря на доступность сырья и легкость получения диме-тиловых эфиров полиоксиметиленгликолей полимеров, они пока еще не нашли широкого практического применения вследствие их плохой растворимости в органических растворителях, высокой температуры плавления и деполимеризации при нагревании, оссбенно в присутствии кислот. [c.403]

    Молекулярный вес гюлиангидридов достигает 5000—10 ООО. Полимеры имеют линейную структуру и отличаются высокой степенью кристалличности. Для полиангидридов алифатических кислот температура плавления кристаллитов составляет 50—100 . Эти полимеры не нашли практического применения, так как ангидридные группы легко подвергаются гидролизу при действии воды. [c.428]

    Строгое соблюдение эквивалентного соотношения исходных веществ требуется в процессах, протекающих при взаимодействии двух различных компонентов (второй, третий и пятый методы поликонденсации). Использование аминокислот, лактамов или солей диаминов и дикарбоновых кислот в качестве исходных мономеров позволяет непрерывно сохранять эквимолекулярное соотношение функциональных групп в реакционной смеси. Поэтому широкое практическое применение получили методы ступенчатой полимеризации лактамов, поликонденсация аминокислот и поликонденсация солей диаминов и дикарбоновых кислот. Находит применение также процесс получения полиамидов из дикарбоновых кислот и диизоцианатов. По этому методу можно получить полиме )пый ячеистый материал, представляющий собой совокупность мелких ячеек, заполненных газом и изолированных друг от друга тонкими слоями полимера. Про- [c.439]

    Большое количество исследований проведено в направлении модифицирования свойств полистирола. Существенным недостатком этого полимера является возникновение в нем больших внутренних напряжений уже в процессе изготовления изделий. В связи с низкой упругостью полистирола даже при сравнительно небольшой внешней нагрузке на изделиях из полистирола могут появиться многочисленные трещины. Простой сополимер стирола с мономером, придающим полимеру большую внутреннюю пластичность, обладает пониженной температурой стеклования (для полистирола 7 =80°). Низкая теплостойкость, свойственная полистиролу (и без внутренней пластификации), ограничивает его широкое практическое применение. Значительно большей теплостойкостью обладают блоксополимеры полистирола с сополимером стирола (40%) и бутадиена (60%) или акрилонитрила (40%) и бутадиена (60%). Блоксополимеризацию проводят методом механической деструкции смеси полистирола и указанных сополимеров. После 20-минутного перетирания этой смеси полимеров в атмосфере азота при 120—150° в закрытом смесителе образуется блоксополимер. Блоксополимер имеет значительно более высокую прочность, особенно при ударных нагрузках, чем полистирол (удельная ударная вязкость блоксополимера составляет 25—30 кг-см1см , полистирола 5—15 кг-см см ), в тоже время температура его стеклования заметно не изменяется. [c.544]

    Общие закономерности Для практического применения полимер-трения Итизноса полимеров материалов необходимо знать их [c.353]

    В последние два десятилетия интенсивно развивается новая область химии высокохмолекулярных соединений — синтез и исследование органических полимеров, основная цепь которых представляет собой систему сопряженных кратных связей, в частности связей С = Ы. Интерес к подобным полимерам объясняется некоторыми их специфическими свойствами, такими, как термостойкость, электропроводность, каталитическая активность в ряде реакций и др., которые открывают полимерам такого рода определенные перспективы практического применения. [c.158]


Смотреть страницы где упоминается термин Полимеры практическое применение: [c.361]    [c.558]    [c.99]    [c.139]    [c.189]    [c.17]    [c.601]   
Неорганические полимеры (1965) -- [ c.80 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Практическое применение пен



© 2025 chem21.info Реклама на сайте