Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкоупругое поведение полимеро

    Основные сведения о вязкоупругом поведении полимеров 232 Феноменологическая теория вязкоупругих свойств полимеров 238 Зависимость вязкоупругих свойств полимеров от частоты и температуры 249 Акустическая спектроскопия полимеров 257 Зависимость акустических параметров от структуры полимеров 267 Кристаллические полимеры 267 Сетчатые полимеры 273 Аморфные полимеры 277 [c.5]


    ОСНОВНЫЕ СВЕДЕНИЯ О ВЯЗКОУПРУГОМ ПОВЕДЕНИИ ПОЛИМЕРОВ [c.232]

    Среди различных акустических методов исследования полимеров наибольшее распространение получили резонансные методы. Наиболее распространенным из них является метод свободных крутильных колебаний полимерного образца. Этот метод используется в крутильных маятниках, на которых проведено подавляющее большинство исследований вязкоупругого поведения полимеров. Большое распространение в последнее время получили также методы вынужденных резонансных колебаний. На низких частотах этот метод реализуется на установках, прин- [c.51]

    Основными задачами теории, описывающей вязкоупругое поведение полимеров, является установление зависимости этих параметров от частоты и температуры, а также зависимости от химического строения и физической структуры. Существует несколько способов описания вязкоупругих свойств полимеров [1]. Одни из них основаны на использовании механических или электрических моделей, т. е. на применении методов электромеханической аналогии, другие — на использовании уравнений последействия Больцмана — Вольтерры [2, 3]. Один из возможных способов описания вязкоупругого поведения полимеров основан на теории упругости и некоторых представлениях термодинамики необратимых процессов [4]. [c.238]

    Пять областей вязкоупругого поведения полимеров [c.34]

    Экстремальное изменение напряжений — нелинейное вязкоупругое явление, поэтому оно не предсказывается в рамках теорий линейной вязкоупругости. Заметим, что в процессах переработки полимеров напряжения экстремально возрастают в периоды, соответствующие заполнению формы при литье под давлением и при получении заготовки в периодических процессах формования с раздувом. Полагают поэтому, что эта особенность реологического поведения оказывает влияние на ход этих процессов. Более того, особенности вязкоупругого поведения полимеров, в частности их способность к релаксации напряжений и упругому восстановлению, играют важную роль в процессах переработки полимеров (особенно сильно они влияют на структурообразование и формуемость). Как было показано в гл. 3, остаточные напряжения и деформации, существующие в изделии после формования, в значительной степени определяют его конечные морфологию и свойства. [c.139]


    ЛИНЕЙНОЕ ВЯЗКОУПРУГОЕ ПОВЕДЕНИЕ ПОЛИМЕРОВ [c.77]

    Одним из основных параметров, характеризующих вязкоупругое поведение полимеров, являются динамические модули упругости, модули потерь, tgo, а также скорость и поглощение звуковых волн. [c.238]

    Книга посвящена описанию акустических методов, применяемых для исследования релаксационных процессов и структуры полимеров. В ней кратко изложена феноменологическая теория акустических свойств полимеров, позволяющая объяснить влияние структуры на вязкоупругое поведение полимеров. Наряду с известными ранее экспериментальными данными в книге систематизированы, обобщены и объяснены новые явления, открытые в последние годы. Рассмотрены основы акустического метода определения ориентации полимеров. Систематизированы экспериментальные данные по молекулярной подвижности и релаксационным процессам в полимерах. Описаны наиболее надежная и удобная аппаратура и методы измерения акустических свойств полимеров. Книга рассчитана на широкий круг читателей научных работников, занимающихся физикой, химией и физико-химией полимеров, инженеров, химиков-технологов, а также аспирантов и студентов вузов. [c.2]

    Наиболее полную информацию о вязкоупругом поведении полимеров можно получить, лишь учитывая распределение времен релаксации, т. е. пользуясь представлениями о спектрах времен релаксации. [c.248]

    Наиболее общим методом описания вязкоупругого поведения полимеров является, по-видимому, метод, основанный на решении уравнения последействия Больцмана — Вольтерры. Однако для описания динамических вязкоупругих и акустических свойств полимеров этот метод применяется крайне редко. [c.248]

    Прочность и релаксационные процессы в полимерах. Стеклообразное, высокоэластическое и вязкотекучее состояние полимеров соответствуют различному деформационному или вязкоупругому поведению полимеров при малых напряжениях в определенных температурных областях. При больших напряжениях выявляются предельные свойства полимеров прочность, предел вынужденной эластичности, предел текучести и др. [c.76]

    В отличие от дифференциальных операторов модуля упругости типа (58) и (59), можно получить и иную форму для оператора модуля, которая является не менее важной для описания вязкоупругого поведения полимеров, чем выражения (58) и (59). Рассмотрим, например, распространение сдвиговых волн. В этом случае связь между [c.30]

    В заключение заметим, что очень часто предпринимаются попытки использовать простые модели Максвелла или Кельвина — Фойхта для описания акустических свойств полимерных материалов. Из изложенного выше следует, что такой подход является принципиально неверным, так как формулы (113) и (117) даже качественно не могут описать динамические вязкоупругие свойства полимеров. Для качественной оценки вязкоупругого поведения полимеров в некоторых случаях можно использовать модель линейного стандартного тела, показанную на рис. 4 [формулы (118)—(125), или модель, изображенную на рис. 5 [формулы (126)—(129)]. [c.39]

    Существует и другой способ акустических измерений. Так как уравнения релаксационной теории, описывающие вязкоупругое поведение полимеров, как правило, симметричны относительно параметра шт, то очевидно, что изучение частотных зависимостей при постоянной тем- [c.50]

    Таким образом, представления Джексона и Колдуэлла об антипластификации и антипластификаторах следует признать ошибочными. На самом деле один и тот же полярный пластификатор при введении в жесткоцепной полярный полимер будет приводить к ослаблению энергии межмолекулярного взаимодействия, если система полимер — пластификатор находится в высокоэластическом состоянии, и к усилению эффективности межмолекулярного взаимодействия, если эта система находится в стеклообразном состоянии. Такой двоякий характер влияния пластификатора на вязкоупругое поведение полимеров аналитически описан Перепечко в рамках феноменологической теории [134—136], хорошо корре-лируюш,ей с экспериментальными данными. [c.162]

    В заключение заметим, что очень часто предпринимаются попытки использовать простые модели Максвелла или Кельвина — Фойхта для описания динамических вязкоупругих свойств полимерных материалов. Из изложенного выше следует, что такой подход является прин ишиально неверным, так как формулы (7.45) и (7.49) даже качественно не могут описать динамические вязкоупругие свойства полимеров. Для качественной оценки вязкоупругого поведения полимеров в некоторых случаях молено использовать модель линейного стандартного вязкоупругого тела или модель, приведенную на рис. 57. Две последние модели можно применять лишь для описания одного релаксационного процесса, в котором распределение времен релаксации может быть в первом (весьма грубом) приближении заменено одннм усредненным, эффективным временем релаксации. Выражения (7.50) — (7.59) качественно правильно описывают динамические вязкоупругие и акустические свойства полимеров они указывают на дисперсию (частотную зависимость) динамического модуля упругости (или дисперсию скорости звука) приводят к конечным значениям динамического модуля как в случае низких частот (со—>О), так и в случае высоких (со—иоо) указывают, что для каждого релаксационного процесса должен существовать максимум на частотной зависимости tgo. [c.248]


    Для более детального ознакомления с вязкоупругим поведением полимеров можно отослать читателя к книге Ферри °, где подробно рассмотрено экспериментальное оборудование и результаты исследования,полученные для широкого круга различных полимерных систем и дана интерпретация результатов с точки зрения молекулярной теории. [c.74]

    Имеются и другие причины, обусловливающие нелинейность вязкоупругого поведения полимеров. К ним относятся следующие  [c.57]

    Для молекулярной физики представляет интерес понять Стеклование механизм, обеспечийающий изменение конформаций, с точки зрения его связи с молекулярными движениями, т. е. установить, относительно каких связей в структуре происходит внутреннее вращение с ростом температуры. Одним из наиболее результативных подходов к решению этой проблемы является сравнение вязкоупругого поведения полимеров с их диэлектрическими релаксационными свойствами и в особенности с явлением ядерного магнитного резонанса. [c.128]

    Наконец, существуют так называбмые обобщенные модели, в которых осуществляются мгновенный упругий отклик, вязкое течение, а также содержится большое число элементов Фойхта, каждый из которых обладает своими собственными модулем упругости и временем запаздывания. Такие модели правильно передают главные характеристики вязкоупругого поведения полимеров и позволяют подучить спектр времен релаксации и запаздывания, однако они имеют ограниченную ценность они применимы только при малых деформациях. Характер течения полимера, как правило, неньютоновский, и упругость полимера не описывается законом Гука. Однако в качественном отношении описанные модели оказываются полезными. [c.173]

    Наиболее полно рассмотрено линейное вязкоупругое поведение полимеров, связь явлений механической релаксации и релаксацпонных переходов с особенностями строения макромолекулярной цепи, проявления нелинейных вязко-упругих эффектов, включая переход через предел текучести. Изложены также основы экспериментальных методов изучения вязкоупругих характеристик полимерных материалов. [c.4]

    Хотя эта модель и описывает главные элементы вязкоупругого поведения полимера, она тоже является упрощенной, так как вязкое течение реального поли лера, имеющего широкое ММР, не является ньютоновским, а упругая часть деформации отклоняется от закона Гука. Очень важно также, что поведение реального полимера не может описываться одним временем релаксации, а требует привлечения целого спектра (набора) времен релаксации для объяснения различных этапов деформации. Это учитывается в модели полимера, предложенной В. А. Каргиным и Г. Л. Слонимским. Модель, подобная изображенной на рис. 43, принимается ими за мо- [c.98]

    Для выяснения молекулярного механизма антипластификации было интересно изучить вязкоупругое поведение полимера, содержащего пластификатор, ограниченно совместимый с ним. В качестве такого пластификатора был выбран полиэтиленгликоль дипинат (ПЭА). Оказалось, что в стеклообразном состоянии скорость звука в системе ПВХ — ПЭА возрастает с увеличением [c.142]


Введение в физику полимеров (1978) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкоупругость



© 2025 chem21.info Реклама на сайте