Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение к реакциям раскисления

    ПРИМЕНЕНИЕ К РЕАКЦИЯМ РАСКИСЛЕНИЯ [c.237]

    Допустим теперь, что концентрацию кислорода путем добавки руды в шлак повышают до предельно возможной, около 0,23%. Тогда 0,2-0,23==0,046>т. Соответствующее этой величине т парциальное давление окиси углерода можно найти из уравнения К= = l/0,0028=/ o/0,046, откуда рсо ==16,5 ат. В таких условиях окисление углерода пойдет самопроизвольно и будет сопровождаться бурным кипением стальной ванны. Из выражения для К также следует, что для наиболее полного раскисления стали углеродом необходимо понижение величины рсо Это достигается входящим в практику производства вакуумированием жидкой стали. Так, например, если поддерживать парциальное давление окиси углерода над жидкой сталью, содержащей 0,2% С около 0,1 ат, то предельная концентрация кислорода определится из уравнения 1/0,0028=0,1/0,2 [О], т. е. [О] =0,0014%. Важным примером применения закона действующих масс к разбавленным растворам является реакция раскисления стали, например, кремнием [c.80]


    Применение натрия для раскисления меди и ее сплавов имеет тот недостаток, что вследствие относительно низкой температуры кипения (883° С) натрия при введении его в жидкую ванну реакция восстановления идет бурно и сопровождается выбрасыванием жидкого металла. Поэтому в качестве раскисли-теля обычно применяли не металлический натрий, а его сплав с оловом (95 /о 5п и 5 /оНа). В настоящее время от примене- [c.44]

    Практика применения сильных раскислителей, таких, как кремний и силикокальций, показала, что наряду со снижением концентрации кислорода в магнитных сплавах происходит снижение их магнитных свойств. Это снижение является результатом присутствия в сплавах неметаллической окисной фазы, которая не удаляется в процессе водородной обработки, В то же время раскисление н<елезоникелевых сплавов марганцем не вызывает понижения их магнитных свойств, так как в этом случае неметаллические включения (продукты реакций раскисления) удаляются из сплавов в процессе водородной обработки [1]. [c.33]

    Преимущество применения углерода состоит в том, что продуктом раскисления является газ, удаляющийся из металла. Поэтому в отличие от раскисления, например алюминием, в стали не остается неметаллических включений, ухудшающих ее качество. Кроме того, как видно из выражения константы для равновесия рассматриваемой реакции /С=Рсо/([С] [О]), уменьшение парциального давления окиси углерода приводит и к уменьшению произведения [С]-[О], что стимулирует раскисление. Поэтому для глубокого раскисления в промышленности применяют вакуумирование л<идкой стали после ее выпуска из печи в различного рода камерах. При вакуумировании благодаря интенсивному выделению СО происходит кипение , вследствие которого сталь освобождается от вредных газов (N2, Нг) и неметаллических включений, что существенно улучшает ее качество. При рсо=1 ат (100 кН/м ) К=1/([С][0]) ив условиях сталеплавильного производства, когда Тл onst, произведение [С] [О] является постоянным. При вакуумной обработке рсо может быть сильно уменьшено, например до 0,01 ат (1 кН/м ), в этом случае раскислительная способность углерода возрастает в сто раз, так как соответственно уменьшается произведение [С] [О]. [c.104]

    Получение и использование. Богатых литием руд не встречается. Наибольший интерес представляют амблигонит LiAl(P04)F, три-филин (Li, Na) (Fe, Mn)P04, сподумен Li, A SiaOe) и некоторые другие природные соединения. Обычно он сопутствует калию и натрию. Промышленное получение лития осуществляют электролизом расплава смеси Li l и КС (хлорид калия добавляют для понижения температуры плавления смеси). Литий довольно широко используют в технике. Небольшие добавки его заметно повышают твердость магниевых сплавов и их устойчивость против коррозии, улучшают свойства свинцовых подшипниковых сплавов. Литий вводят для раскисления меди и при рафинировании серусодержа-щего никеля его способность реагировать с N2 используют для очистки газов от азота. В последнее время литий нашел применение в атомной промышленности из-за большой теплоемкости и теплопроводности он удобен как теплоноситель в ядерных реакторах, а его способность задерживать нейтроны используется при изготовлении защитных стержней реактора. При этом извлекается двойная польза во-первых, эффективное защитное действие, а, во-вторых, по реакции [c.204]


    При нагревании с кислородными кислотами хромовая кислота выделяет кислород, напр., с серною 2СгО - - 3№50 = = Сг (50 ) - -0 + ЗНЮ. Понятно, вследствие этого, что смесь хромовой кислоты или ее солей с серною кислотою составляет отличное окисляющее средство, которое употребляется часто в химической практике и в технике, для некоторых случаев окисления. Так, №5 и 50 переводится этим путем в Н ЗО . Действуя как сильно окисляющее вещество, СЮ переходит в окись Сг Оотдавая половину содержащегося в нем кислорода 2СЮ = Сг-О О 558]. Действуя на раствор иодистого калия, СгО, как многие окислители, выделяет иод, причем реакция идет пропорционально содержанию СгО , и количество освобождающегося иода может служить для определения количества СгО (количество иода может быть с точностью определяемо иодометрически, гл. 20, доп. 535). Накаливая хромовый ангидрид в струе аммиачного газа, получают тоже окись хрома, воду и азот. Во всех случаях, когда хромовая кислота действует окислительно при нагревании и в присутствии кислот, продукт ее раскисления составляет соль СгХ окиси хрома зеленого цвета, так что красный или желтый раствор соли хромовой кислоты переходит при этом в зеленый раствор соли окиси хрома СгЮ . Окись эта сходна с А1ЮЗ, РеЮ и тому подобными основаниями состава кЮ . Это сходство видно в трудной растворимости безводной окиси в кислотах, в студенистом виде коллоидального гидрата, в образовании квасцов [и] летучего безводного хлорного хрома r l . в применении гидрата для протравы при крашении и т. п. Окись хрома, r O редко в малых количествах встречается в хромовой охре, образуется окислением хрома и низших его окислов, раскислением и разложением солей хромовой кислоты (напр., прокаливанием аммиачной и ртутной солей) и распадением солеобразных соединений самой окиси СгХ или Сг Х , подобно глинозему, с которым окись хрома разделяет и то свойство, что образует слабое основание, легко дающее, кроме средних СгХ , двойные и основные соли. Здесь особо примечательно, что соли окиси хрома обладают или фиолетовым, или зеленым цветом даже при совершенно том же составе, так что нагревание или другие условия переводят [c.237]

    При ремонте сваркой плавлением сера попадает в металлическую ванну с основным, сильно насыщенным примесями металлом и в меньшей степени с электродным металлом. Несмотря на строгое ограничение содержания серы, ее концентрация в металле шва достигает опасного уровня для качества сварки. В итоге в металле шва оказывается значительное количество сульфидов и свободной серы. При выборе режимов ремонтной сварки необходимо стремиться ограничивать содержание серы на возможно более низком уровне. Марганец обладает более высоким, по сравнению с железом, химическим сродством к сере и связывает ее в тугоплавкий (1620 °С) сульфид марганца. Марганец может поступать в металл шва из основного и присадочного металлов, а также из материалов, входящих в состав покрытия или флюса. Обессериванию сварочной ванны способствует применение электродов с покрытиями фтористокальциевого типа, что связано с усиленным раскислением сварочной ванны. Десульфирование металла сварочной ванны может происходить путем выгорания серы при сварке голыми электродами на воздухе или электродами с покрытиями руднокислого типа. Однако при температурах плавления, т.е. ниже температуры кипения, реакция связывания серы и вывод ее на поверхность протекают слабо, в результате чего в металле остается значительное количество сульфидов. Недостаток перечисленных способов в том, что они эффективны лишь при относительно малом превышении над нормативным содержания серы и не дают надежных результатов предупреждения образования трещин при сварке и при последующей эксплуатации конструкции в сероводородной среде. [c.391]


Смотреть главы в:

Химическая термодинамика материалов -> Применение к реакциям раскисления




ПОИСК





Смотрите так же термины и статьи:

Раскисление



© 2025 chem21.info Реклама на сайте