Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы магнитные

    Правило фаз было выведено Гиббсом в 1876 г. Приведенная выше формулировка его в настояш,ее время может быть заменена более расширенной. Двойка в соотношении (VIH, 2) является результатом принятого нами допущения, что из внешних факторов только два — температура и давление — могут влиять на состояние равновесия в Системе. Однако возможны системы, в которых на равновесие могут оказывать влияние и другие внешние факторы (электрические и магнитные поля, поле тяготения). В этих случаях в соотношение (VIH, 2) вместо двойки войдет соответственно иное число внешних факторов. С другой стороны, в некоторых системах изменения давления или (реже) изменения температуры практически не влияют на равновесие. Так, незначительные изменения давления (например, колебания атмосферного давления) не оказывают ощутимого влияния на свойства металлических сплавов. E таких случаях число степеней свободы соответственно уменьшается на единицу и определяется как условная вариантность системы Су л- [c.247]


    Для выбора состава сплава необходимо было выяснить зависимость между хи.мическим составом осаждаемого сплава и его магнитными свойствами, для чего были исследованы сернокислые и хлористые электролиты. Установлено, что при малом содержании никеля в сплаве коэрцитивная сила меньше 200 э, при содержании никеля в сплаве от 15 до 38% (от 15 до 30% для хлористых электролитов) коэрцитивная сила колеблется в пределах 200—300, 9 и при дальнейшем увеличении количества никеля в сплаве магнитные свойства резко ухудшаются. Таким образом, для [c.506]

    Кроме сплавов, указанных в табл. 18, анализируют также плавы никеля, кобальта, вольфрама и молибдена, железо-никель-алюминиевые сплавы, магнитные сплавы, победить и др. [c.226]

    Для выбора состава сплава В. М. Жогина и Б. Я. Казначей [21 изучили зависимость между химическим составом осаждаемого сплава и его магнитными свойствами, для чего были исследованы сернокислые и хлористые электролиты. Установлено, что при малом содержании никеля в сплаве коэрцитивная сила меньше 200 э, при содержании никеля в сплаве 15—38% (для хлористых электролитов 15— 30%) коэрцитивная сила колеблется в пределах 200—300 э, и при дальнейшем увеличении количества никеля в сплаве магнитные свойства резко ухудшаются. Максимум коэрцитивной силы соответствует осадкам, содержащим около 30% N1. По-видимому, это связано с возникновением двухфазной системы, так как именно вблизи концентрации в сплаве никеля —30% происходит переход от сплавов с гексагональной кристаллической решеткой, характерной для кобальта, к сплавам с кубической гранецентрированной решеткой. Для сравнения были измерены магнитные свойства чистых кобальтовых и никелевых покрытий, полученных из ванн различного состава. Оказалось, что магнитные свойства чистых металлов значительно ниже, чем магнитные свойства сплава, а никель, полученный из ванн разного состава, обладает различными магнитными свойствами отсюда можно заключить, что разница в магнитных свойствах определяется структурой осадка, включением в осадок каких-либо примесей, либо и тем и другим. [c.223]

    Измерение магнитной восприимчивости также указывает на то, что концентрация -вакансий линейно уменьшается с увеличением содержания меди в сплаве, падая до нуля при содержании меди - 60% (ат.). Тем не менее не наблюдается удовлетворительной [c.57]

    Мартенситные. Мартенсит образуется при сдвиговом типе фазового превращения при быстром охлаждении стали (закалка) из аустенитной области фазовой диаграммы. Эта структура определяет твердость закаленных углеродистых сталей и твердость мартенситных нержавеющих сталей. У нержавеющих сталей этого класса решетка объемноцентрированная кубическая и сплавы магнитны. Типичное применение — ножевые изделия, лопатки паровых турбин и режущие инструменты. [c.244]


    Для источников магнитного поля в виде намагниченных тел -постоянных магнитов плотность тока / = 0. В этом случае используются магнитожесткие материалы, т.е. материалы, имеющие больщую коэрцитивную силу и остаточную индукцию. К последним относятся ферритобариевые сплавы типа ЮНДК-24,. магнико, АЛИИ и др. [6]. Важнейшей характеристикой магнитных материалов служит максимальная удельная магнитная энергия, достигающая для сплавов 5шС05,з 128 кДж/м . [c.77]

    В аппаратах с магнитными мелю,щими телами, предложенными в 1965 г. в США и получившими дальнейшее развитие в работах В. А. Абросимова и др., в качестве рабочих элементов используются постоянные твердые магниты (магнитотвердые тела). В отличие от магиито-мягких элементов магнитотвердые элементы во вращающемся поле при определенных условиях приходят в синхронное вращение вокруг своих осей. Материалом мелющих тел служат сплавы типа ЮНДК и феррит бария тела имеют сферическую форму с диаметром от 2 до 16 мм. При двухполюсном вращающемся магнитном поле индуктора, питаемого от промышленной электросети с частотой 50 Гц, частота вращения тел составляет 3000 об/мин. Характеристики типичного аппарата таковы объем рабочей камеры до 100 л, производительность до 1000 кг/ч по оксиду алюминия (AI2O3). [c.113]

    Огромный парк отечественных металлорежущих станков непрерывно увеличивается внедряются современные конструкции обрабатывающего инструмента из новых материалов. Широко применяющиеся инструментальная углеродистая сталь и ее сплавы начали заменяться быстрорежущими сталями, цементированными или сне-кающимися карбидами, алмазами, керамикой. Созданы и все шире используются труднообрабатываемые жаропрочные сплавы, титан и его сплавы, магнитные сплавы. [c.5]

    При поглощении водорода качество многих металлов и сплавов существенно ухудшается. При этом изменяются обычно твердость, термическая стойкость, текучесть, электропроводность, магнитные свойства и др. Обычная углеродистая сталь, например, при поглощении значительных количеств водорода становится хрупкой, в ней появляются пузырьки и трещины, являющиеся внешними признаками газовой водородной коррозии — разрушения углеродистого сплава вследствие декарбонизации по следующей примерной схеме  [c.18]

    В этом случае при конструировании печей-теплогенераторов используется способность переменного тока создавать переменное магнитное поле и как следствие индуцировать в материалах, обладающих маг- нитной проницаемостью, токи, в частности вихревые (токи Фуко), характеризующиеся движением свободных элект- 2 ронов по замкнутым контурам. С точки зрения магнитной проницаемости все тела разделяются на два класса ферромагнетики (железо, сталь, чугун, никель, кобальт и неко-горые сплавы) и парамагнетики. Магнитная проницаемость различных парамагнетиков маЛо отличается и при практических расчетах принимается равной и—1-10 Г/м, т. е. близкой к магнитной проницаемости вакуума ()11а= 1,256-10 Г/м). [c.204]

    Часто каталитические свойства металла или сплава зависят от их способности хемосорбировать определенные компоненты среды. Поэтому неудивительно, что переходные металлы обычно являются хорошими катализаторами и что электронные конфигурации в сплавах, благоприятствующие каталитической активности и пассивации, сходны между собой. Например, если палладий, содержащий 0,6 -электронных вакансий на атом в металлическом состоянии, катодно насыщен водородом, он теряет свою каталитическую активность для ор/по-па/>а-водородной конверсии [59] -уровень заполнен электронами растворенного водорода, и металл не может больше хемосорбировать водород. По каталитической эффективности Рё—Аи-сплавы аналогичны палладию, пока не достигнут критический состав 60 ат. % Аи. При этом и большем содержании золота сплав становится слабым катализатором. Золото, будучи непереходным металлом, снабжает электронами незаполненный уровень палладия магнитные измерения подтверждают, что -уровень заполнен при критической концентрации золота. Результаты исследований каталитического влияния медно-никелевых сплавов различного состава на реакцию 2ННа представлены на рис. 5.17. При 60 ат. % Си и [c.98]

    Дяя изучения металлов и сплавов, а также в задачах диагностики широко используют электромагнитные методы, в основу которых положены взаимосвязи между изменениями электрических и магнитных свойств и процессами, происходящими в металлах и сплавах при их обработке или в результате тех или итак воздействий. [c.17]

    ПЕРМАЛЛОЙ [англ. permalloy, от )erm(eability) — проницаемость и al-оу — сплав] — магнитно-мягкий прецизионный сплав на никелевой основе с высокой магнитной проницаемостью. В пром. масштабах применяется с 20-х гг. 20 в. Представляет собой сплав никеля и железа, легированный кремнием, марганце.м, хромом и молибденом с примесями углерода, фосфора и серы (табл. 1). Магн. св-ва П. (табл. 2) зависят от хим. состава, способа выплавки, видов термообработки и формы изделий, физ. св-ва — от содержания легирующих элементов. Различают П. первого класса (с нормальными магн. св-вами), второго (с повышен- [c.167]


    Изучение металлографии и магнитных свойств электролитических сплавов цинка с кобальтом, проведенное Знаменским и Ма-занко в нашей лаборатории, показало, что эти сплавы магнитны, т. е. представляют собой механическую смесь цинка и кобальта. После термической обработки при 300° С магнитные свойства теряются в результате образования немагнитного химического соединения С05 2п2х, наличие которого можно обнаружить под микроскопом. [c.274]

    В другом пиролитическом устройстве образец, приведенный в контакт с деталью из сплава магнитных материалов (Со, Ре, N1), нагревается токами высокой частоты в индукционной печи до температуры, отвечающей точке Кюри для данного сплава. Изменяя состав сплава, можно дискретно менять температуру пиролиза. Преимущество такого устройства — высокая воспроизводимость температуры пиролиза. Устройство состоит из пиролит1 -ческой камеры, монтируемой непосредственно на испаритель хроматографа Цвет , и блока управления, в котором находится генератор токов высокой частоты. [c.145]

    Упорядочение сильно влияет на ряд свойств мета.ыических сплавов (магнитные, электрические, механические и другие свойства). Поэтому экспериментальное и теоретическое изучение упорядочения представляет большой практический интерес для решения проблемы получения сплавов с заданными свойствами. Вместе с тем следует еще раз подчеркнуть, что все теоретические положения и вы воды действительны не только для металлических сплавов, но и для любых фаз переменного состава, в которых наблюдается упорядочение. [c.127]

    С другой стороны, сплавы никель — медь парамагнитны или е диамагнитны для малых концентраций никеля, но стано-гся ферромагнитными при больших концентрациях никеля, роторые сплавы, содержащие медь, ферромагнитны, хотя и не 1,ержат металл, который является ферромагнитным в чистом -.тоянии. Этот вопрос будет разобран в следующей главе. Ниже приводятся ссылки на работы, касающиеся вопроса учения этих сплавов магнитными методами [32—55]. [c.207]

    Титрование Т1 находит практическое применение при анализе различных веществ, однако обычно требуется предварительное его выделение с помощью экстракции или ионного обмена. При определении Т1 и Ре в шлаке, ферротитане, ильмените предварительно проводят экстракцию купферроном [61(82)]. Сплавы магнитных металлов подвергают ионообменному разделению [59(9)]. Определение титана с помощью фотометрического титрования находит применение в анализе сырья, полупродуктов и готовой продукции в известковой и цементной промышленности [60(136), 61(42)] кроме того, титан определяют в твердых металлах [61 (168)], сплавах [63(62), 63(63)] и без предварительного отделения потенциометрически [60(135)] или фотометрически [62(80)] в присутствии А1 — в алюминиево-тйтановых катализаторах, [c.201]

    Превращение типа порядок — беспорядок. При 1373°К для неупорядочного сплава. Магнитное превращение (точка Кюри). Приведено значение 829815—5д. [c.302]

    Стали с особыми свойствами. К этой группе относятся нержавеющие, жаростойкие, жаропрочные, магнитные и иекото[)ые другие стали. Нержавеющие стали устойчивт, против коррозии в атмосфере, влаге и в растворах кислот, жаростойкие — в коррозионно-активных средах при высоких температурах. Жаропрочные стали сохраняют высокие механические свойства при нагревании до значительных температур, что важно при изготовлении лопаток газовых турбин, деталей реактивных двигателей и ракетных установок. Важнейшие легирующие элементы жаропрочных стале это хром (15—20%), никель (8—15%), вольфрам. Жаропрочные ста.ли принадлежат к аустеннтиым сплавам. [c.686]

    Преобразователи для контроля анизотропии механических и электрофизических свойств металлов. Одной из важнейших характеристик современных металлов и сплавов, во многом определяющей их механические и физические свойства, является степень совершенства кристаллографической текстуры, под которой понимается преимущественная пространственная ориентация зерен в полюфисталле. Текстура, обусловливая анизотропию свойств, обеспечивает избирательно в различных направлениях повышение пластичности, прочности, модуля упругости, магнитных свойств, стойкости металлических покрытий против коррозии и т. д. Создание в материалах совершенной кристаллографической текстуры является в ряде случаев одним из путей повышения их эксплуатационных характеристик. Для этого исследователям и специалистам-пракгикам необходимы методы и средства для получения сведений о типе и степени совершенства кристаллографической текстуры. Другой не менее важный аспект необходимости измерения анизотропии физических свойств металлов, обусловивший рождение на свет разнообразных конструкций датчржов, вызван необходимостью определения механических остаточных напряжений в деталях машин и механизмов, элементах строительных конструкций и т. д., выполненных из различных марок конструкционных сталей. Для этих целей используется явление магнитоупругого эффекта, под которым в общем случае принято понимать изменение магнитных свойств материала под воздействием механических напряжений. Измерив изменение величины или характера анизотропии магнитных свойств, можно, используя градуировочные кривые зависимости магнитных свойств исследуемого материала от величины механических напряжений, судить об их наличии в металле, а иногда и оценить их величину [50]. [c.134]

    Главная масса никеля идет на производство различных сплавов с железом, медью, цинком и другими металлами. Присадка никеля к стали повышает ее вязкость и стойкость против коррозии. Сплавы на основе никеля можно разделить на жаропрочные, магнитные и сплавы с особыми свойствами. Жаропрочные сплавы никеля используются в современных турбинах и реактивных двигателях, где температура достигает 850—900 °С таких температур сплавы на основе железа не выдерживают. К важнейшим жаропрочным сплавам никеля относятся нимоник, инконель, хастеллой. В состав этнх сплавов входит свыше 60% никеля, 15—20% хрома и другие металлы. Производятся также металлоксрамические жаропрочные сплавы, содержащие никель в качестве связующего металла. Эти снлавы выдерживают нагревание до 1100 °С. Широко применяются для изготовления элементов электронагревательных устройств сплавы типа нихром а, простейший из которых содержит 80% никеля и 20% хрома. [c.694]

    Плавленые катализаторы делятся на два типа окиспйе и металлические. Технологию производства плавленых окисных катализа- торов лучше всего рассмотреть на примере производства катализаторов синтеза аммиака, получаемых путем сжигания железа в пламени кислорода с образованием расплава магнитной окиси железа. По патентам Баденской анилиновой и содовой фабрики (22 ] катализатор готовят сжиганием в кислородном пламени железа высокой степени чистоты с добавками специальных промоторов. Получаемый сплав размельчают до частиц нужных размеров. [c.185]

    Применение. Элементный кремний в больших количествах используется для получения различных сплавов. Добавка к стали 2—4% 81 сильно увеличивает ее магнитную проницаемость, получаются дииамная и трансформаторная стали, которые применяются для изготовления трансформаторов, электромоторов и генераторов. Чугун, содержащий 5— 1% 51, кислотоупорен (образование защитной пленки 5102), его широко применяют в химическом машиностроении. Кремний (в виде ферросилиция) часто добавляют в сталь при ее выплавке, чтобы удалить содержащийся в металле кислород (образуется 5 0г, который уходит в шлак). [c.376]

    У диамагнетиков (водород, инертные газы и др.) ц < 1. Для парамагнетиков (кислород, оксид азота, соли редкоземельных металлов, соли железа, кобальта и никеля и др.) ц > 1. Ферромагнетики (Ре, N1, Со и их сплавы, сплавы хрома и марганца, Сс1) имеют магнитную проницаемость ц 1. Магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности внешнего поля. Кривая намагничивания В (я) ферромагнетиков имеет вид характерной петли гистерезиса, по ширийе которой различают материалы магнитомягкие (электротехнические стали) и магнитожесткие (постоянные магниты). При определенных значениях напряженности поля индукция достигает насыщения. [c.38]

    Физические и химические свойства. Железо имеет ряд полиморфных видоизменений. Полиморфные превращения железа имеют очень большое значение в технологии металлов, так как они обусловливают структуру и свойства сплавов. Устойчивое при обычной температуре а-железо характеризуется объемноцептри-рованной кубической решеткой при 769°С оно теряет свои магнитные свойства — происходит 3-превращение без изменения структуры решетки при 908°С осуществляется переход в -железо с гранецентрированной кубической решеткой, при 1390°С переход в 6-железо с объемно центрированной кубической решеткой, а прн 1534°С плавление. [c.300]

    Особые требования к железу и его сплавам иредт являет )лектротехниче1 кая промышленност ,, для которой производятся магнитные стали и сплавы (трансформаторное железо), а также немапштные ета.пи и чугуны, стали и сплавы с большим электрическим сопротивлением и сплавы с особенностями теплового расширения. [c.310]

    Аустенитные стали получили свое название по аустенитной фазе или 7-фазе, которая существует в чистом железе в виде стабильной структуры в температурном интервале от 910 до 1400 °С. Эта фаза имеет гранецентрированную кубическую решетку, немагнитна и легко деформируется. Она является основной или единственной фазой аустенитных нержавеющих сталей при комнатной температуре и в зависимости от состава имеет стабильную или метастабильную структуру. Присутствие никеля в значительной степени способствует сохранению аустенитной фазы при закалке промышленных сплавов Сг—Ре—N1 от высоких температур. Увеличение содержания никеля сопровождается повышением стабильности аустенита. Легирование марганцем, кобальтом, углеродом и азотом также способствует сохранению при закалке и стабилизации аустенита. Аустенитные нержавеющие стали могут упрочняться холодной обработкой, но не термообработкой. При холодной обработке аустенит в метастабиль-ных сплавах (например, 201, 202, 301, 302, 302В, 303, ЗЗОЗе, 304, 304Ь, 316, 316Ь, 321, 347, 348 см. табл. 18.2) частично переходит в феррит. По этой причине указанные стали и являются метастабильными. Они магнитны и имеют объемно-центрирован-ную кубическую решетку. Этим превращением объясняется значительная степень упрочнения при механической обработке. В то же время стали 305, 308, 309, 3098 при холодной обработке слабо упрочняются, и если и становятся магнитными, то в очень малой степени. Сплавы с повышенным содержанием хрома и никеля (например, 310, 3108, 314) имеют практически стабильную аустенитную структуру и при холодной обработке не превращаются в феррит и Не становятся магнитными. Аустенитные нержавеющие стали очень широко применяют в различных областях, включая строительство и автомобильное производство, а также в качестве конструкционного материала в пищевой и химической промышленности. [c.297]

    Использование кобальта в технике. Кобальт используется как легирующий металл в сталях, придавая им особые свойства (стали нержавеющие, инструментальные, с особыми магнитными свой-стками). Кобальт также является основой жаропрочных сплавов, леп ,юваниь х титаном, хромом, молибденом и другими металлами, Большое количество кобальта иснользуется в производстве сверхтвердых материалов на основе карбидов титана и вольфрама. [c.315]

    Никель, содержащий 0,6 -электронных вакансий на один атом (определено магнитным способом), в сплаве с медью — непереходным металлом, не имеющим -электронных вакансий, сообщает сплаву склонность к пассивации при атомном содержании Ni 30—40 %. Этот критический состав определялся по скорости коррозии в растворе Na l (рис. 5.12 и 5.13), по склонности к питтингу в морской воде (рис. 5.13), и более точно, путем оаре-деления значений /крит и /пас (рис. 5.14) [46—48] или по значениям Фладе-потенциалов в 1 н. H2SO4 (рис. 5.15) [49]. Питтингообразование в морской воде наблюдается главным образом при [c.92]

    В зависимости от структуры различают три основных класса нержавеющих сталей. Каждый класс включает ряд сплавов, которые несколько различаются по составу, но обладают сходными физическими, магнитными и коррозионными свойствами. Здесь приводятся обозначения сталей в соответствии с классификацией Американского института железа и стали (А181), которую часто используют на практике. Перечень основных марок нержавеющих сталей, выпускаемых промышленностью, представлен в табл. 18.2. Основными классами нержавеющих сталей являются мартенситный, ферритный и аустенитный. [c.296]

    Итак, под действием сил обменного взаимодействия даже при отсутствии внепшего магнитного поля спиновые магнитные моменты атомов ферромагнитного вещеспъа выстраиваются в одном направлении. Направление самопроизвольной намагниченности определяется строением кристаллической решетки ферромагнитного материала или сплава. [c.24]


Смотреть страницы где упоминается термин Сплавы магнитные: [c.608]    [c.79]    [c.140]    [c.609]    [c.391]    [c.686]    [c.694]    [c.646]    [c.653]    [c.653]    [c.94]    [c.213]    [c.23]    [c.121]    [c.138]    [c.174]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Кластеры в сплавах магнитные свойства

Коэффициент теплопроводности медных сплавов в магнитном поле

Магнитные и оптические свойства комплексных соединеПространственная структура комплексных соединеОбщие свойства металлов. Сплавы

Магнитные п оптические свойстна комплексных соединеПространственная структура комплексных соединеОбщие свойства металлов. Сплавы

Магнитные свойства сплавов парамагнитных сплавов

Свойства магнитные ряда сплавов кобальта

Свойства магнитные сплавов кобальт мишметалл самарий

Сплав магнитные свойства

Сплавы металлов, адсорбционные магнитные свойства



© 2025 chem21.info Реклама на сайте