Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Субъединицы рибосомные

    Значительная часть генов рибосомных белков (31 из 52) содержится в двух главных кластерах на хромосоме Е. соИ в районе str-sp на 72 мин и в районе rif на 89 мин. Район str-sp содержит 4 оперона, кодирующих 27 рибосомных белков, а также EF-Tu, EF-G и а-субъединицу РНК-полимеразы. Район rif имеет 2 оперона, кодирующих 4 рибосомных белка, а также Р- и Р -субъединицы РНК-полимеразы. Каждый оперон продуцирует соответствующую полицистронную мРНК Цистроны и их последовательность в этих полицистроновых мРНК схематически показаны на рис. 118. [c.237]


    Рибосомальные РНК составляют примерно 657о сухого веса рибосом, белки — 35%. Эти РНК разделяются на 3 класса 23—28 S, м. м. 1 10" 1G—18 S, м. м. < 1 10, и низкомолекулярные РНК—5S, м. м. 40000. Вероятно, молекулы белка взаимодействуют с неспирализованными участками рРНК, рибонук-леопротеидный комплекс сворачивается в компактную структуру рибосомной субъединицы. Б 70 S-рибосоме содержится примерно 65 полипептидных цепей со средней молекулярной массой 65 000. Б 30 S-частицах имеется 19—20 сортов белков, в 50 S-частицах их более 50. [c.272]

    Рибосомы, связанные с эндоплазматической сетью (которые можно получить путем дальнейшего фракционирования микросомной фракции), и свободные рибосомы (которые получают нри длительном центрифугировании цитоплазмы), по-видимому, идентичны. Из этих рибосом можно экстрагировать два типа РНК каждый такой тип локализуется в одной из двух субъединиц рибосомной частицы и специфичен для нее. Молекулярные веса этих двух типов РНК равны приблизительно 5-10 и 1,3-10 , а константы седиментации колеблются в пределах 16 —18 и 23—28 3 соответственно. Очень много белков, по-видимому, ассоциировано с рибосомами или входят в их состав. Некоторые из них (но отнюдь не все ) — это, очевидно, новообразованные бе.лки, синтез которых на поверхности рибосомы только что закончился. [c.253]

    Малая рибосомная субъединица [c.38]

    Кроме м-РНК в рибосомах содержится р-РНК, функции которой неизвестны. Возможно, что р-РНК может играть роль матрицы в синтезе структурных белков. Допускают также, что р-РНК является матрицей для синтеза структурных белков рибосом, но определенных доказательств этому пока нет. Рибосома прикрепляется к м-РНК в специальной точке на малой рибосомной субъединице возможно, что одна цепь м-РНК вступает во взаимодействие с несколькими рибосомами (полирибосомы). Механизм работы рибосомы остается и до сих пор во многих отношениях загадочным, но несомненно, что рибосома движется вдоль м-РНК. При этом рост полипептидной белковой цепи происходит так, что [c.392]

    Разворачивание субъединиц. Рибосомные субъединицы в нативном состоянии характеризуются компактной укладкой рибо-нуклеопротеидного тяжа. Обеднение рибосомных субъединиц ионами [c.463]

    Характерной чертой одной из видимых проекций является борозда, разделяющая рибосому на две неравные части (рис. 33). Это разделение отражает тот факт, что рибосома состоит из двух разделяемых субчастиц, или рибосомных субъединиц. Действительно, при [c.62]

    Каждая рибосомная субчастица содержит много различных белков, и большинство из них представлено лишь одной молекулой на рибосому. В этом состоит коренное отличие структурно асимметричного рибосомного рибонуклеопротеида от вирусных нуклеопротеидов, образованных за счет упорядоченной упаковки многих идентичных белковых субъединиц. Открытие и доказательство этого факта, главным образом в пионерских исследованиях Ж.-П. Валлера, установило один из важнейших принципов структурной организации рибосом. [c.90]


    Возможно, аналогичная регуляция степени компартментализации на полирибосомах существует также в случае другого фактора элонгации, EF-1. Л. П. Овчинниковым с сотр. было обнаружено, что поли-рибосомная фракция эукариотической клетки содержит латентную фосфокиназу, которая в определенных условиях может активироваться и специфически фосфорилирует а-субъединицу EF-1 в результате EF-1 утрачивает свое неспецифическое сродство к высокомолекулярным РНК и покидает полирибосомы. Нельзя исключить того, что фосфорилирование EF-la может оказывать влияние на скорость элонгации и служить для регуляции трансляционного процесса в клетке. [c.220]

    Транскрипцию генов рибосомных РНК, тРНК и большинства генов, кодирующих белки, обеспечивают молекулы РНК-полимеразы, содержащие главную а-субъединицу (молекулярная масса у Е. oli 70 кД, у Вас. subtilis— 43 кД). На несколько тысяч молекул РНК-полимеразы, имеющихся в бактериальной клетке, приходится примерно тысяча молекул главной а-субъединицы. В меньших количествах имеются минорные а-субъединицы, используемые для транскрипции ограниченного числа генов (см. раздел 3 этой главы). Набор минорных а-субъединиц у разных бактерий неодинаков. По размеру они меньше главной а-субъединицы. Сравнение нуклеотидных последовательностей генов разных а-субъединиц свидетельствует о том, что все они произошли от одного предкового гена. [c.135]

    Рибосомы сами по себе являются рибонуклеопротеинами с содержанием нуклеиновых кислот -60%. Они находятся в свободном состоянии прежде всего в цитоплазме и в связанном — в эидоплазматическом ретикулуме. Все рибосомы состоят из двух субъединиц, на которые они диссоциируют в зависимости от концентрации. У наиболее хорошо изученных рибосом Е. oli большая (50 S) субъединица включает 5 S- и 23 S-рибосомные РНК, а также 34 различных белка малая (30 S) субъединица состоит из 16 S-рибосомной РНК и 21 белка. Рибосомы эукариот образованы 60 S- и 40 S-субъединицами. [c.393]

    РИС. 15-13. Две проекции 708-рибосомы Е. oli. Цифрами обозначены места связывания специфических антител к определенным рибосомным бел-хам (нумерация такая же, как в табл. 15-5). Буквы S и L не указаны, так как из рисунка и так ясно, в какой из субъединиц находится белок. В тех случаях, когда для какого-то одного антитела обнаруживается более чем одно место связывания, эти места обозначены буквами А, В, С и D. В других проекциях можно было бы увидеть много других идентифицированных мест связывания [97]. [c.230]

    Репликаза фага Q исследована довольно детально. Для образования полного репликазного комплекса кроме субъединицы, детерминируемой геномом фага, нужны еще три бактериальных белка. Это рибосомный белок S1 и факторы элонгации EF-Tu и EF-Ts. Все эти три белка обычно участвуют в трансляции мРНК. Однако фаг использует их способность связываться с РНК совсем для другой цели. [c.244]

    Р. из самых разнообразных, организмов (как прокариотич., так и эукариотич.) имеют сходное строение. Они состоят из двух разделяемых субчастиц, или рибосомных субъединиц. При определенных условиях (напр., при понижении концентрации Mg + в среде) Р. обратимо диссоциирует на две субчастицы с соотношением их мол. масс ок. 2 1. Прокариотическая 70S Р. диссоциирует на субъедишщы с коэф. седиментации 50S (мол. м. 1,5-10 ) и 30S (мол. м. 0,85-10 ). Эукариотическая Р. разделяется на субчастицы 60S и 40S. Две рибосомные субчастицы объединены в полную Р. строго определенным образом, предполагающим специфич. контакты их поверхностей. [c.264]

    По-видимому, рРЙК определяет осн. структурные и функцион. св-ва Р, в частности обеспечивает целостность рибосомных субъединиц, обусловливает их форму и ряд структурных особенностей. Специфич. пространств, структура рРНК детерминирует локализацию всех рибосомных белков, играет ведущую роль в организации функцион. центров Р. [c.265]

    Крупный белок eIF-2B, построенный из 5 различных субъединиц, имеет вспомогательное значение. Он образует комплекс с eIF-2, в котором сродство eIF-2 к ГДФ уменьшено, а к ГТФ увеличено, в результате чего обеспечивается эффективный обмен связанного ГДФ на свободный ГТФ. (Иначе, при физиологических концентрациях ГДФ и ГТФ более 90% молекул eIF-2 было бы связано с ГДФ, существуя, таким образом, в неактивном состоянии.) Образующийся комплекс eIF-2B eIF-2 GTP непосредственно связывает инициаторную метионил-тРНК, и затем комплекс Met-tRNA р eIF-2 GTP переносится от eIF-2B на инициирующую 40S рибосомную частицу. Таким образом, eIF-2B катализирует повторное использование eIF-2 после его освобождения (в форме eIF-2 GDP) из рибосом, заканчивающих инициацию (см. рис. 124). [c.249]

    Репрессия трансляции под действием двуспиральной РНК. В лизате ретикулоцитов двуцепочечные РНК, включая как двуспиральные фрагменты вирусного происхождения (полиовируса или реовирусов), так и синтетические комплексы поли(А) поли(и) или поли(1) поли(С), вызывают ингибирование синтеза белка в присутствии гемина, похожее по всем признакам на репрессию, вызываемую отсутствием гемина. Двуцепочечная РНК, которая оказывает такое воздействие на трансляцию, должна состоять не менее, чем из 50 пар нуклеотидных остатков. Оказалось, что, так же как и в результате отсутствия гемина, в присутствии такой двуцепочечной РНК происходит активация ингибитора инициации, обозначаемого как dsl, и этот ингибитор тоже является протеинкиназой, фосфорилирующей а-субъединицу eIF-2. В отличие от H I, однако, dsl связан с рибосомными частицами и представляет собой белок с молекулярной массой около 67000 дальтон. Активация ингибитора требует АТФ и происходит как результат автофосфорилирования белка. Именно автофосфорилирование индуцируется взаимодействием белка с двуцепочечной РНК. По-видимому, механизм репрессии инициации под действием активированного dsl во всем аналогичен таковому в случае H I и заключается в изменении взаимодействия eIF-2 в результате его фосфорилирования с дополнительным белком eIF-2B (см. выше). [c.262]


    Аналогичные белковые факторы инициации обнаружены также в эукариотических клетках. Открыто около 10 эукариотических белковых факторов инициации (см. табл. 14.1), их принято обозначать elF. Все они, по-видимому, важны для инициации, однако только три из них абсолютно необходимы и существенны для белкового синтеза eIF-2, eIF-3 и eIF-5. Они получены в чистом виде eIF-2 состоит из а-, 3- и у-субъединиц (мол. масса 38000, 47000 и 50000 соответственно), eIF-3 (мол. масса 500000—700000) и eIF-5 (мол. масса 125000). Укажем также, что в синтезе белка их роль тождественна роли инициаторных белков у прокариот. Отличительной особенностью синтеза белка у эукариот является, кроме того, наличие среди 10 белковых факторов инициации еще одного белка, названного кэп-связы-вающим. Соединяясь с 5 -участком кэп мРНК, этот белок содействует образованию комплекса между мРНК и 40S рибосомной субчастицей. Необходимо отметить, что до сих пор не раскрыты тонкие молекулярные механизмы участия белковых факторов инициации как у про-, так и у эукариот в сложном процессе синтеза белка. [c.526]

    Эксперимент показывает, что активный рибосомный комплекс действительно испытывает при трансляции периодические кон-формационные изменения. Согласно работе [129] в синхронизованной системе, содержащей Поли-У, субъединицы рибосом Е. oli и очищенные трансферные факторы, образование активного комплекса происходит в несколько этапов  [c.597]


Смотреть страницы где упоминается термин Субъединицы рибосомные : [c.285]    [c.58]    [c.335]    [c.137]    [c.312]    [c.230]    [c.270]    [c.268]    [c.394]    [c.53]    [c.54]    [c.55]    [c.55]    [c.126]    [c.198]    [c.218]    [c.218]    [c.236]    [c.238]    [c.248]    [c.249]    [c.137]    [c.579]    [c.37]    [c.37]    [c.38]    [c.38]    [c.38]    [c.39]   
Молекулярная биология Структура рибосомы и биосинтез белка (1986) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте