Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны, получаемые в процессе полимеризации

    Если наблюдаемый материал слишком толст для того, чтобы через него могли проходить электроны, необходимо получить из него тонкий срез. Для этого материал должен быть достаточно жестким. Жесткость достигается с помощью процесса, называемого заливкой, который заключается в постепенном замещении воды в образце органическим мономером (например, метилмет-акрилатом), который при полимеризации дает твердый материал. После затвердевания считается, что полимерный блок содержит неразрушенный образец, который затем разрезают с помощью ультрамикротома на слои толщиной от 500 до 1000 А. Эти срезы затем окрашивают (иногда окрашивание проводят перед заливкой), выдерживая их в растворах солей молибдена, вольфрама, свинца или урана, либо в парах тетраокиси осмия. (Термином окрашивание обозначается процесс введения атомов тяжелого металла с помощью химической реакции или в результате образования комплексов с некоторыми компонентами образца для увеличения электронной плотности.) Таким способом атомы тяжелых металлов вводятся в белки, а также в другие макромолекулы и агрегаты, создавая тем самым в образце участки с высокой электронной плотностью. Окрашенные препараты дают прекрасные картины (рис. 3-4) со множеством важных деталей, которые интерпретируются по распределению атомов металлов, т. е. по функциональным группам, с которыми способен реагировать конкретный окрашивающий агент. Следует иметь в виду, что при этом могут возникнуть артефакты. Например, при включении осмия с обратной стороны толстой мембраны на изображении получаются две черные линии, разделенные неокрашенным пространством, что может привести к ошибочному заключению [c.67]


    В процессе плазменного осаждения на поверхности подложки образуется полимерный слой, который заполняет поры. Это обусловливает изменение характера переноса воды через подложку от капиллярного потока в порах до диффузионного через непористую гомогенную мембрану. Возможны также случаи смешанного потока. Анализ свойств мембран, полученных путем плазменной полимеризации, показал [91], что при плазменном осаждении в течение 7 мин получаются мембраны диффузионного типа. Если же обработка проводилась в течение 4 или [c.79]

    Эффективность процесса электродиализа во многом зависит от свойств ионообменных мембран. Различают два типа таких м е м-бран гетерогенные и гомогенные. Гетерогенные мембраны получают вводом частиц ионообменных материалов в пленкообразующие смолы. Ионообменные материалы имеют склонность набухать в воде, и поэтому гетерогенные мембраны отличаются малой механической прочностью. В гомогенных мембранах ионообменная часть образует единый комплекс с пленкой. Гомогенные мембраны получают или полимеризацией смеси реагентов, причем один из них должен содержать ионообменную группу, или введением ионообменных групп в уже готовые пленки. Для повышения прочности мембран их обычно формуют на упрочняющих сетках. [c.111]

    Гомогенные мембраны получают так же, как и ионообменные смолы, реакциями полимеризации и поликонденсации. После смешения компонентов реакционную массу выливают на листы или в формы, где и происходит окончательный процесс смолообразования. К гомогенным мембранам можно также отнести мембраны, получаемые активированием первоначально инертных пленок. [c.468]

    Если одновременно с полимеризацией протекает образование поперечных связей, обусловливающее трудности при переработке полимера, то мембраны из таких полимеров целесообразно получать в процессе полимеризации. Именно так получают гомогенные ионообменные мембраны (см. разд. 4.3). Большинство мембран такого типа отличается от мембран, полученных из растворов или расплавов, тем, что первые могут содержать асе три вида предельных конформаций линейных полимеров, тогда как в последних обычно исключается присутствие кристаллитов с развернутыми цепями (см. рис. 4.10). Причина этого заключается в том, что переход из статистически свернутой конфигурации (как в растворе, так и в расплаве) в конфигурацию развернутой полимерной цепи до кристаллизации по стерическим причинам является кинетически затрудненным. Вместо самопроизвольного развертывания происходит складывание цепей таких молекул в метастабильные кристаллы с небольшими размерами в направлении молекулярных цепей. После кристаллизации удлинение и перестройка молекул сопряжены с огромными трудностями. При кристаллизации в процессе полимеризации [c.239]


    Советскими исследователями были получены существенные результаты в деле развития радиационных методов привитой полимеризации и их применения для модифицирования различных. материалов. Методом радиационной привитой полимеризации были улучшены такие важные технические свойства полимерных волокон и пленок, как накрашиваемость, устойчивость к процессам гниения (для целлюлозных волокон), адгезионные показатели, радиационная стойкость и светостойкость [249—254] на основе полиолефиновых пленок были получены гомогенные ионообменные мембраны [255, 256]. [c.371]

    Получены положительные результаты по получению гомогенных анионитовых мембран путем прививки на химически стойкие полимеры виниловых мономеров с ионогенными функциональными группами. Эти мембраны так же, как и гомогенные мембраны полимеризационного типа, характеризуются тем, что введение ионогенных групп производится непосредственно в ходе процесса привитой полимеризации в растворе, что способствует их более однородному распределению [5]. [c.85]

    Ионообменные смолы, получаемые реакцией поликонденсации или полимеризации из начальных продуктов, содержащих в своей структуре ионогенные группы, могут быть отлиты в виде листов, дисков или пленок, для чего смолу начальной стадии конденсации заливают в формы, где и происходит окончательный процесс смолообразования. При этом смола переходит в нерастворимую и непластичную стадию. Получаются однородные или гомогенные мембраны. [c.30]

    Водорастворимые фосфаты, полученные обработкой поливинилового спирта фосфатом мочевины или аммония, при нагревании способны к дальнейшей полимеризации без помощи катализатора. Росс и др. [5Р6] внесли изменения в этот метод. Они получали анионитовые мембраны из пленок поливинилового спирта обработкой их третичными аминами гетероциклического или ароматического типа (такими, как пиридин, хинолин, диметиланилин). Обработка состояла в том, что пленку из поливинилового спирта погружали в третичный амин на 2 ч при температуре 100° С. Затем следовала сшивка, для того чтобы сделать мембраны нерастворимыми в воде. В качестве сшивающих агентов использовали органические полицианаты. Активацию и сшивку можно проводить одновременно, используя смесь третичного амина и полицианата. Каплан и др. [5Р7] усовершенствовали этот процесс. Они получали катионитовые мембраны из пергаментной бумаги, которая импрегнировалась водными растворами кислых солей много основных кислот, например однозамещенным фосфатом натрия, и затем подвергалась термообработке при повышенных температурах. [c.140]

    Результаты исследования динамики уменьщения диаметра пор в процессе образования напыленного слоя показали, что на испытанных подложках продолжительность напыления при получении мембран для микрофильтрации, ультрафильтрации и обратного осмоса составляет соответственно менее 30 мин, 30- 90 мин, более 90 мин. Продолжительность экспозиции можно значительно снизить, если использовать подложку с порами меньшего диаметра [30]. Например [31], получены мембраны для обратного осмоса с ф = 92—95% (по 3,5%-ному водному раствору Na l) и с высокой проницаемостью при продолжительности полимеризации 2—3 мин на подложке, которой служила нитрат-ацетатцеллюлозная мембрана (Millipo-ге) с >dn = 0,025 мкм (рис. 1-6). [c.26]


Смотреть страницы где упоминается термин Мембраны, получаемые в процессе полимеризации: [c.139]    [c.322]   
Смотреть главы в:

Синтетические полимерные мембраны Структурный аспект -> Мембраны, получаемые в процессе полимеризации




ПОИСК







© 2025 chem21.info Реклама на сайте