Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы, образование в результате

    Впервые представление об образовании двойного электрического слоя было высказано Квинке (1859) и развитое работах Гельмгольца (1879). По этим представлениям, двойной электрический слой подобен плоскому конденсатору, одна обкладка которого находится в твердой фазе, другая — в растворе. Толщина конденсатора имеет порядок молекулярного радиуса. По Гельмгольцу, образование двойного электрического слоя происходит следующим образом. На поверхности коллоидных частиц адсорбируется преимущественно один из ионов, который и сообщает поверхности свой знак заряда. Под действием электростатических сил притяжения противоионы (или компенсирующие ионы) стремятся расположиться возможно ближе к ионам, адсорбированным на поверхности частиц. В результате образуются два слоя ионов, из которых один расположен на поверхности, другой — в растворе, на расстоянии молекулярного радиуса (рис. 93, /). Такая система ионов (в целом нейтральная) получила название двойного электрического слоя по Гельмгольцу. [c.314]


    Торможение а-частиц в веществах обусловлено главным образом взаимодействием этих частиц с электронами. Последние захватываются а-частицами, в результате чего образуются однозарядные ионы и электронейтральные атомы гелия. Но вследствие огромной скорости движения частицы присоединенные электроны отщепляются, причем процесс этот повторяется многократно. Одновременно из атомов и молекул поглощающей среды образуются ионы. На один акт образования пары ионов [c.259]

    Реакции, при протекании которых возникают промежуточные вещества с высокой энергией (радикалы), часто имеют механизм цепных реакций. Обычно в момент элементарного акта взаимодействия между активными молекулами появляются реакционноспособные промежуточные вещества — активные центры,—которые в свою очередь реагируют с компонентами реакционной системы, воспроизводят подобные себе частицы, в результате чего происходит циклическое повторение стадий реакции, Таким образом, возникает цепь реакций, так как после первичного акта цепной реакции появляется активная частица с высокой энергией (например, при воздействии излучения), которая продолжает последовательность стадий реакции. Такого рода процессы характерны прежде всего для реакций в газовой фазе (взрыв гремучего газа, реакция водорода с хлором), а также для некоторых реакций в растворах (фотохимические реакции, реакции полимеризации и т. д.). Возникновение реакционноспособной частицы часто называют реакцией зарождения цепи, например реакция (За) при образовании НВг (гл. 7). Под развитием цепи понимают последовательное продолжение элементарных стадий с постоянным образованием активных центров, продолжающих цепь радикалов. К реакциям обрыва цепи относится рекомбинация, т. е. реакция, обратная (За). Еще раз обратимся к уже описанному выше процессу образования бромоводорода (гл. 7). Для него найдена следую- [c.180]

    Стехиометрические уравнения реакций окисления — восстановления не отражают истинного механизма их протекания. Так, например, уравнение (6.6) показывает, что протекание реакции обусловлено столкновением шести реагирующих частиц, не считая ионов водорода (МпОГ + 5Fe +). Однако согласно кинетической теории активных соударений вероятность одновременного столкновения даже четырех частиц крайне мала, а пяти и более — близка к нулю. Обычно происходит столкновение двух или, реже, трех частиц, в результате чего образуется так называемый активированный комплекс и затем — продукты реакции. В ходе реакции происходит образование различных промежуточных соединений, радикалов и т. д., обладающих нередко довольно большой продолжительностью жизни. Химическая активность многих промежуточных соединений бывает выше, чем исходных веществ, что нередко является причиной различных побочных реакций. Стехиометрическая реакция типа (6.6) является суммой отдельных стадий, и скорость суммарной реакции будет определяться самой медленной стадией. [c.113]


    Процесс укрупнения коллоидных частиц в результате их слипания, приводящий в конечном итоге к выпадению вещества в осадок или к образованию студней, называется коагуляцией. Коагуляцию можно вызвать повышением температуры, добавлением электролитов, прибавлением к золю другого золя с противоположным по знаку зарядом частиц (взаимная коагуляция). Для начала явной (т. е. различимой глазом) коагуляции необходимо прибавить к золю некоторое минимальное количество электролита с, называемое порогом коагуляции. При концентрациях электролита, меньших порога, коагуляция протекает в скрытом состоянии. Коагуляцию вызывают те из ионов прибавляемого электролита, заряд которых противоположен по знаку заряду коллоидных частиц. Величина, обратная порогу коагуляции, называется коагулирующей способностью иона Р  [c.167]

    Одна из трудностей исследования электроактивных промежуточных продуктов свободнорадикального характера, возникающих в ходе реакции на электроде, состоит в том, что во многих случаях значение потенциала их образования оказывается существенно более отрицательным по сравнению с равновесным значением стандартного потенциала Ео, характеризующего процесс дальнейщего электрохимического восстановления таких частиц. В результате одноэлектронная стадия реакции не выделяется, а радикальные частицы не успевают перейти в раствор и гибнут на поверхности электрода, присоединяя один или несколько электронов. Эту трудность можно обойти, заменив стадию электронного переноса с металла на разряжающуюся частицу фотоэмиссионным процессом генерации промежуточных продуктов. [c.217]

    Твердые частицы, увлекаемые потоком жидкости к фильтровальной перегородке, попадают в различные условия. Наиболее простой случай, когда твердая частица задерживается на поверхности фильтровальной перегородки и не проникает в пору вследствие того, что размер последней в начальном сечении меньше размера твердой частицы. Если размер твердой частицы меньше размера поры в самом узком ее сечении, частица может пройти через фильтровальную перегородку вместе с фильтратом. Однако она может задержаться внутри перегородки в результате адсорбции а стенках лоры или механического торможения на том участке поры, который имеет очень неправильную форму. Такая застрявшая частица уменьшает эффективное сечение поры, и вероятность задерживания в ней последующих твердых частиц увеличивается. Возможен также случай, когда отдельная твердая частица полностью закупоривает пору и делает ее непроходимой для других частиц. Наконец, небольшая по сравнению с порами твердая частица может не войти в пору и остаться на поверхности фильтровальной перегородки. Это происходит тогда, когда над входом в пору на поверхности фильтровальной перегородки образуется сводик из нескольких относительно небольших твердых частиц, который пропускает жидкость и задерживает другие твердые частицы. Образование сводика наблюдается лишь при достаточно высокой концентрации твердых частиц в разделяемой суспензии. Все описанные явления встречаются на практике. [c.13]

    Раскалывание частицы в результате внутреннего давления, вызванного образованием большого количества паров, нами наблюдалось на образце свежего катализатора, содержащего около 5— 7% влаги, в зоне с температурой 700" С. При этом разрушалось до 70% катализатора. После предварительного высушивания катализатора при 150°С и выше растрескивание полностью устранялось. Видимо, при переработке тяжелого сырья существенную роль играют обе причины растрескивания температура регенерации и контакт частиц с жидкой фазой. [c.83]

    При очистке сточных вод производства полистирола с концентрацией сольвара (ПВС) от 100 до 750 мг/л в однородном и неоднородном поле алюминиевых электродов с межэлектродным расстоянием 20-40 мм в диапазоне напряжений между электродами от 40 до 220 В наблюдалась коагуляция частиц (образование агрегатов), которые флотировались пузырьками газов, образующихся на электродах. Результаты анализа проб, отобранных из нижней части камеры, на ХПК, pH, светопропускание [c.101]

    Однако она может задержаться внутри фильтровальной перегородки в результате адсорбции на стенках поры или механического торможения на том ее участке, когорый имеет неправильную форму. Такая застрявшая частица будет уменьшать эффективное сечение поры, и вероятность задерживания в ней последующих твердых частиц увеличивается. Возможен также случай, когда отдельная твердая частица полностью закупоривает пору и делает ее непроходимой для других частиц. Наконец, небольшая по сравнению с порами твердая частица может, несмотря на это, не войти в пору и остаться на поверхности фильтровальной перегородки. Это происходит, если над входом в пору на поверхности перегородки образуется сводик из нескольких относительно небольших твердых частиц, который пропускает жидкость и задерживает другие твердые частицы. Образование сводика происходит лишь при достаточно высокой концентрации твердых частиц в суспензии. [c.187]

    Адгезия частиц — взаимодействие частиц и твердой поверхности стенок аппарата, рабочих органов аппарата и т. п. когезия — это связь между молекулами, приводящая к образованию единого твердого тела (возникает в месте контакта взаимодействующих тел) агломерация — процесс укрупнения частиц в результате спекания агрегация — самопроизвольное укрупнение частиц слеживаемость — возникновение сил взаимодействия между частицами в результате появления кристаллизационных мостиков между частицами или капиллярных сил. [c.151]


    Реакции с разветвляю щи м и с я цепями развиваются лавинообразно — единичная реакция одного свободного радикала ведет к образованию не одной, а нескольких активных частиц в результате зарождаются все новые и новые цепи. Пример — окисление водорода, которое при определенных условиях протекает так  [c.142]

    Изучение диффузионного пламени привело к открытию важных закономерностей процесса образования сажевых частиц. Эти результаты были использованы для разработки новых, более совершенных способов производства сажи. [c.193]

    Гетерокоагуляции аналогичен процесс флокуляции, заключаю-и ийся в образовании агрегатов (хлопьев) из гетерогенных частиц в результате собирающего действия высокомолек лярных веществ, называемых флокулянтами. Механизм действия флокулянтов заключается в пх адсорбции на нескольких частицах с образованием полимерных мостиков, связывающих частицы между собой. Прн неоптимальных количествах флокулянта мол<ет наблюдаться, наоборот, стабилизация дисперсной -системы. Флокуляиты подразделяют на неорганические и органические, природные и синтетические, на ионогенные, неионогенные и амфотерные. Из неорганических флокулянтов применяется активная кремневая кислота (АК). Природными органическими флокулянтами являются крахмал, карбоксиметилцеллюлоза (КМЦ) и др. Наибольшее распространение в настоящее время получил выпускаемый промышленностью полиакриламид (ПАЛ) /—СНг—СН— , имеющий относитель- [c.345]

    Следовательно, коэффициент коагуляции k j, будучи умноженным на концентрацию 7-частиц, дает счетный поток /-частиц на одну г-частицу. Частицы фракции I образуются из меньщих частиц первичных и, (1—1)-частиц, вторичных и (г—2)-частиц, третичных и ( —3)-частиц и т. д. Если перебирать все частицы, меньшие г-частиц, то взаимодействия, дающие один и тот же эффект (например, образование третичных частиц в результате взаимодействия 1—2 и взаимодействия 2—1 ), будут учтены дважды. Для единообразия процесса перебора вариантов необходимо повторять дважды и взаимодействия одинаковых частиц так, например, скорость рождения вторичных частиц (количество образующихся частиц в единице объема в единицу времени) определяется выражением цср ь однако с формальной точки зрения следует записать 0,5Х Х( чф 14-< 11ф 1)- Таким образом, следующие уравнения системы будут иметь вид  [c.110]

    При определении понятия термодинамической активности растворов указывается [3], что появление коэффициента активности, отличного от, единицы, обусловлено двумя обстоятельствами 1) изменением концентрации растворенного вещества вследствие сольватации или,образования продуктов присоединения и 2) изменением энергии частиц в результате их взаимодействия между собой и с молекулами растворителя. , [c.8]

    Образование частиц в результате внутренних реакций [c.32]

    Хотя Б классической коллоидной химии все формы ассоциации частиц называются одним термином флокуляция , в технологии промывки ствола скважины буровым раствором необходимо делать различие между двумя формами ассоциации, оказывающими соверщенно разное воздействие на реологию суспензий. Термин флокуляция относится только к свободной ассоциации пластинок глины, в результате чего образуются хлопья или гели, как это описывалось в предыдущем подразделе. Термин агрегация используется в этой книге, чтобы охарактеризовать ассоциацию частиц в результате сжатия диффузных частей ДЭС и образования агрегатов из параллельных пластинок, отстоящих друг от друга максимум на 2 мм. Агрегация — это процесс, противоположный внезапному увеличению с-расстояния, которое наблюдал Норриш, когда слои чешуйки натриевого монтмориллонита преодолевали силы притяжения, действующие между ними, и расходились, образуя практически самостоятельные элементы. Таким образом, в то время как флокуляция вызывает повышение предельного статического напряжения сдвига, агрегация способствует его снижению, так как она уменьшает число элементов, доступных для образования структур, и площадь поверхности, на которой может происходить взаимодействие частиц. [c.158]

    Как уже отмечалось при измерении фильтрации бурового раствора в стандартных условиях (через бумажный фильтр), до образования фильтрационной корки наблюдается мгновенная фильтрация. После этого объем фильтрата становится пропорциональным квадратному корню из времени. При бурении скважины мгновенная фильтрация может быть весьма значительной, если порода имеет высокую проницаемость, а буровой раствор не содержит частиц такого размера, который необходим для закупоривания порового пространства породы в результате образования перемычки, на которой отлагается фильтрационная корка. Перемычки способны образовывать только частицы, размер которых находится в определенном соотношении с размером пор. Частицы, которые по размеру больше порового отверстия, не могут войти в поры и уносятся потоком бурового раствора частицы значительно меньшего размера, чем это отверстие, беспрепятственно проникают в породу. Однако частицы определенного критического размера застревают в сужениях поровых каналов и образуют сводовые перемычки непосредственно у поверхности пористого пласта. После образования такой перемычки начинают удерживаться частицы все меньшего размера вплоть до мельчайших коллоидных частиц, в результате в пласт проникает только фильтрат бурового раствора. Период мгновенной фильтрации весьма непродолжителен — максимум 1—2 с. [c.255]

    Провал частиц через отверстия решетки может происходить и при скоростях, превышающих скорости витания частиц в результате действия инерционных сил при пульсациоином движении частиц, а также образования агрегатов частиц, для взвешивания которых требуются более высокие скорости [1, 3—5]. — Прим. ред. [c.693]

    Для нейтральных частиц образование комплекса возможно в результате мультипольного электростатического взаимодействия, нри заметном перекрывании их электронных оболочек в области дейстиия обменных сил, либо же при образовании ионной пары, которая стабилизируется переходом электрона с одпой молекулы на другую. [c.138]

    Для процесса образования гетерогенных активных центров простейшее теоретическое уравнение может быть представлено соотношением Томпсона — Гиббса, однако оно не удовлетворяет условиям, поскольку было доказано, что пересыщенные пары не будут конденсироваться на плоской поверхности, на которой адсорбирован толстый слой жидкости. С другой стороны, положения теории Вольмера [891], экспериментально проверенные Тумеем [873], доказывают, что насыщение по высоте аппарата возрастает при увеличении угла контакта между жидкостью и твердыми частицами. Качественные результаты свидетельствуют о том, что конденсация на увлажненной поверхности твердой частицы начинается при точке росы, а на неувлажненной твердой поверхности — при переохлаждении на 0,015—0,020 °С, что эквивалентно пересыщению около 101%. [c.416]

    Во-вторых, нанесение полимерного защитного покрытия резко меняет природу материала подложки место кристаллического атомного соединения - металла - занимает аморфное атомное соединение - полимер, т.е. происходит замена типа электронной структуры материала подложки. Замена кристаллического атомного соединения, у которого каждый электрон взаимодействует сразу со всей системой в целом, на аморфное атомное соединение, электронная структура которого представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, препятствующими распределению электронных волн за границу каждой данной межатомной связи, меняет механизм взаимодействия подложки с такими типичными молекулярными твердыми соединениями, какими являются кристаллические парафиновые частицы. В результате такой замены более интенсивная адгезионная связь, основанная на образовании двойного электрического слоя, возникающего в результате контактной электризации поверхностей металла и парафиновой частицы, с энергией более 65 кДж/моль /56/, сменяется адгезионной связью, определяемой ван-дер-ваальсовыми силами, энергия которых не превышает 50 кДж/моль. Поэтому смена металлической поверхности на полимерную уже сама по себе должна привести к ослаблению адгезионной связи. Действительно, как бьшо показано экспериментально /30/, сила прилипания парафина к поверхности такого наиболее интенсивно парафинирующегося полимера, как полиэтилен, в 2,3 раза ниже, чем у стали. [c.143]

    Коагуляция осуществляется путем добавления в разделяемую неоднородную систему веществ, разрушаюн1,их сольватированные оболочки и уменьшающих диффузионную часть двойного электрического слоя у поверхности извещенных частиц. В результате этого между частицами возникают силы сцепления, приводящие к образованию агрегатов частиц, обладающих большей массой. Осаждение образующихся агрегатов происходит соответственно с большей скоростью, и процесс разделения существенно ускоряется. [c.181]

    Проявление кризисных состояний с образованием структурных модификаций в системе можно проследить также на примере процесса перегонки нефтяного сырья. В общем случае при перегонке нефтяного сырья, по мере испарения части легких компонентов происходит сближение, коалесценция и взаимная фиксация смолисто-ас-фальтеновых частиц. При этом в межчастичном пространстве иммобилизуются компоненты среды, которые находятся также в виде прослоек между частицами. В результате в системе формируются флокулы, находящиеся в броуновском движении. В этих условиях в системе сосуществуют структурные образования в виде мицелл и сложных структурных единиц. Дальнейшее испарение системы приводит к вытеснению части иммобилизованных компонентов, практическому исчезновению прослоек между частицами и их непосредственному контакту. При этом образуются достаточно прочные агрегативные комбинации, окклюдирующие тем не менее некоторое количество компонентов, находившихся ранее в иммобилизованном состоянии. Остаточное количество последних зависит прежде всего от начальных размеров смо-листо-асфальтеновых частиц и физико-химических параметров испаряемой системы. Воздействуя на систему в кризисных состояниях можно регулировать конфигурацию и плотность упаковки структурных образований, изменять количество иммобилизованной фазы, переводить ее в раствор с последующим удалением из системы при перегонке. [c.172]

    Слои с адсорбированными молекулами ПАВ обладают упругостью и механической прочностью, в результате чего предотвращается слипание дисперсных частиц. Образование молекулярноадсорбционных твердообразных слоев П. В. Ребиндер назвал структурно-механическим фактором стабилизации. [c.84]

    На рис. 10.17 приведены зависимости величин Еот и Е р от расстояния между коллоидными частицами. Как видно, результирующая энергия взаимодействия (кривая 3 на рис. 10.17) приводит к притяжению (Е в < 0) на очень м 1лых и отталкиванию (E b > 0) на больших расстояниях. между частицами. Решающее значение для устойчивости дисперсных систем имеет величина потенциальног о барьера отталкивания (Е акс), которая, в свою очередь, зависит от хода кривых Еот и Е р. При больших значениях этого барьера коллоидная система устойчива. Слипание коллоидных частиц возможно лишь при достаточном их сближении. Это требует преодоления потенциального барьера отталкивания. Прн некоторых небольших положительных значениях Емакс (кривая 3) преодолеть его могут лишь немногие коллоидные частицы с достаточно большой кинетической эиер-гией. Это соответствует стадии медленной коагуляции, когда только пебо.ш.шая часть соударений коллоидных частиц приводит к их слипанию. При медленной коагуляции со временем происходит некоторое уменьшение общего числа коллоидных частиц в результате образования агрегатов из 2—3 первичных частиц, но коагулят не выпадает. Подобную коагуляцию, не сопровождающуюся видимым изменением коллоидного раствора, называют скрытой коагуляцией. При Дс1льнейшем уменьшении потенциального барьера скорость коагуляции, характеризуемая изменением числа частиц в единицу времени, возрастает. Наконец, если потенциальный барьер переходит из области отталкивания в область притяжения (кривая 4 на рис. 10.17), наступает быстрая коагуляция, когда каждое [c.309]

    Методы получения дисперсных систем измельчением более крупных частиц называют диспергационными. Методы, основанные на образовании частиц в результате кристаллизации или конденсации, называют конденсационными. Диспергационные методы широко используют для получения грубодисперсионных систем — суспензий, эмульсий, порошков. Выбор типа измельчения твердых материалов зависит от их механических свойств. Хрупкие материалы предпочитают измельчать ударом, вязкие — истиранием. [c.13]

    При значительном повышении концентрации частиц в результате их дальнейшего выделения или в результате уменьшения количества свободной воды частицы начинают связываться между собой гидратньши оболочками. Система лереходит в состояние геля с мало прочной (коагуляционной по П. А. Ребиндеру) структурой. Дальнейшее уменьшение количества свободной воды может вызвать постепенное твердение геля. В таких системах процессы перекристаллизации частиц могут происходить, но с пониженной скоростью. Постепенный рост кристаллов, сопровождающийся образованием сростков между ними, тоже будет приводить к твердению материала и приобретению их механической прочности. [c.21]

    Застуднение материала сначала происходит в результате взаимодействия между гидратными оболочками соседних частиц (образование коагуляционной структуры по П. А. Ребиндеру). Водородные связи, образующиеся между молекулами воды этих оболочек, сравнительно слабы и не препятствуют тиксотропному разжижению геля. [c.184]

    Хотя, как отмечалось выше, важнейшую роль при коагуляции электролитами играет валентность ионов, однако заметно сказывается и их индивидуальный химический характер. Во многих случаях такая специфичность действия ионов связана с разряжением коллоидных частиц вследствие образования на их поверхности малодиссоциированных или труднорастворимых соединений. Например, потребные для быстрой седиментации отрицательного золя AsjSa концентрации НС1 и КС1 относятся друг к другу, как 3 5. Более сильное коагулирующее действие НС1 обусловлено происходящим под влиянием избытка водородных ионов разряжением коллоидных частиц в результате образования в их адсорбционном слое недиссоциированных молекул H2S. Точно так же более сильное коагулирующее действие на положительный гидрозоль окиси железа иона ОН по сравнению, например, с ионом СИ обусловлено образованием в адсорбционном слое труднорастворимых молекул Fe(OH)a. Так как ионы ОН тратятся на нейтрализацию ионов Fe" не самих частиц, а только адсорбированных ими, в осадок при седиментации выпадает много больше вещества, чем то, отвечало бы эквивалентным соотношениям. Например, 1 г аммиака может осадить из гидрозоля до 2000 г водной окиси железа (л Ре20з-1/Н20). [c.617]

    С точки зрения метода МО при образовании многоатомной частицы электроны попадают в зону притяжения нескольких атомных ядер, т. е. становятся общими для всей частицы. В результате атомные орбитали трансформируются в молекулярные. Молекулярной орбиталью (МО) называют волновую функцию, которая описывает состояние электрона в поле двух или нескольких атомов. Число МО многоатомной частицы равно числу АО атомов, входящих в ее состав. При этом принимают, что атомные орбитали одного атома, сильно отличающиеся от атомных орбиталей других атомов соответствующими энергетическими уровнями, становясь молекулярными орбиталями, сохраняют свою форму. Такие молекулярные орбитали не принимают участия в химической связи и называются несвязывающими (МО " ). Электроны, находящиеся в них, обладают тем же запасом энергии, что и в исходных атомных о рбиталях. [c.66]

    Концентрационный коэффициент активности характеризует изменение состояния вещества в данном растворителе в связи с изменением его концентрации. Он отражает взаимодействие между частицами растворенного вещества, изменение взаимодействия их с растворителем (по сравнению с бесконечно разбавленным раствором) и изменение числа этих частиц в результате образования различного рода продуктов присоединения. Единый нулевой коэффициент активности характеризует изменение энёргии вещества при переходе его от бесконечно разбавленного раствора в каком-то растворителе к бесконечно разбавленному водному раствору. Он отражает изменение взаимодействия между растворенным веществом и растворителем при замене любого растворителя водой. [c.196]

    Раздельно кинетические уравнения для O7 и Huj использовать нельзй, так как любая реакция образования при расходовании этих частиц будет сопровождаться перераспределением этих частиц вследствие быстро устанавливающегося ]1авновесия. Поэтому можно записать лишь сумму скоростей накопления этих частиц. В результате условия квазистациопарности принимают вид [c.286]

Рис. 20.3. Явление, зафиксированное в 72-дюй.мовой. водородной пузырьковой камере Калифорнийского университета (Л. В. Альва>рез и сотр.). Соударяется отрицательный каон из пучка падающих частиц. В результате его. соударения с протоном образуется. положительный каон и отрицательный ксион. Отрица-, - тельный ксион затем -распадается с образованием лямбда-частацы и отрицательного ииона. Лямбда-частица нейтральна и поэтому не оставляет следа она обнаруживается по распаду с образованием протона и отрицательного пиона. Рис. 20.3. Явление, зафиксированное в 72-дюй.мовой. <a href="/info/68139">водородной пузырьковой камере</a> Калифорнийского университета (Л. В. Альва>рез и сотр.). Соударяется отрицательный <a href="/info/70598">каон</a> из <a href="/info/332344">пучка</a> падающих частиц. В результате его. соударения с протоном образуется. положительный <a href="/info/70598">каон</a> и отрицательный ксион. Отрица-, - тельный ксион затем -распадается с образованием <a href="/info/590442">лямбда</a>-частацы и отрицательного ииона. <a href="/info/70770">Лямбда-частица</a> нейтральна и поэтому не оставляет <a href="/info/10537">следа</a> она обнаруживается по распаду с образованием протона и отрицательного пиона.
    Сплавы этого класса представляют простейший, в некоторых отношениях, случай, поскольку их поведение при водородном охрупчивании можно относительно легко связать с простыми физикометаллургическими свойствами. Как уже указывалось, имеющиеся данные позволяют предполагать (правда, не с полной уверенностью), что связанные с водородом потери пластичности обусловлены присутствием включений и выделений [72, 74, 87]. Последовательность событий при этом, по-видимому, такова. Дислокации, несущие водород, при деформации скапливаются около частиц, в результате чего динамически может создаваться высо кая локальная концентрация водорода [314]. Часть этого водорода может освобождаться в результате перекрывания полей напряжений дислокаций, а еще часть водорода будет захвачена включением [314]. Когда на растягиваемом образце начинает формироваться шейка, водород принимает участие в локальных процессах, и может либо снижать прочность границы раздела частица/матрица, либо стабилизировать малые полости или трещины, образующиеся в частицах, либо проникать в полости растущие вокруг частиц и содействовать их росту, за счет внутреннего давления Нг. Отметим, что последнее взаимодействие начинается только на стадии образования шейки. Все перечисленные процессы могут облегчать и ускорять обычное вязкое разрушение и делать его возможным при меньшей деформации, что, в свою очередь, соответствует потере пластичности и уменьшению относительного сужения, или же ускоренному растрескиванию при испытаниях на КР. Весь ход событий можно проследить по рнс. 52. [c.139]

    Когда ДНК бактериофага проникает в бактериальную клетку, она обычно практически мгновенно начинает контролировать работу метаболического аппарата клетки и направляет его полностью на образование новых вирусных частиц. В результате приблизительно через 20 мин образуется 100—200 новых вирусных частиц, что приводит к лизису клетки и ее гибели. Принципиально отлично от этого ведут себя умеренные фаги. Проникнув в клетку, ДНК умеренного фага может репрессироваться и интегрироваться с бактериальным геномом точно так же, как фактор Р (рис. 15-2). При этом он переходит в состояние профага и вступает в гак называемую лизогенную фазу развития репрессированная ДНК фага реплицируется как часть генома бактерии, не причиняя эреда летке до тех пор, пока какой-нибудь фактор не снимет репрессию и не активирует интегрированный генетический материал. После этого происходят репликация фага и л нэис бактерии. Умеренные [c.258]

    При высоких температурах продуктов сгорания Or>100 f образование золовых отложений на конвективных поверхностях нагрева происходит не только на базе наносимых на поверхность нагрева частиц летучей золы в твердом виде и конденсации щелочных соединений, а определенную роль играет и перенос на поверхность наиболее легкоплавких частиц. В результате этого образуются уже не связанные, а связанно-шлаковые отложения. Эти отложения, по сравнению со связанными отложениями характеризуются более высоким содержанием железа и отличаются меньшей степенью сульфатизации в начальных стадиях образования. [c.212]

    Реакция взаимодействия двуокиси углерода с углеродом — реакция эндотермическая, и для ее протекания необходим подвод тепла извне. Внешний обогрев реагирующего слоя вследствие низкой теплопроводности частиц создает запаздывающий тепловой поток от стенки к центру, что в свою очередь создает температурное поле, резко неоднородное по высоте и сечению слоя . Это затрудняет изучение процесса реагирования и определение кинетических характеристик. Более надежен и перспективен метод непосредственного нагрева слоя электрическим током. Этот метод известен давно, однако его применение дл такого рода исследований затруднялось образованием микровольтовых дуг между частицами, в результате чего возникали локальные высокие температуры. Однако, как показали опыты, механическое давление (— 5 кПсм ) предотвращает образование микровольтовых дуг. Специальные измерения позволили установить, что температуры по высоте и сечению распределяются практически равномерно (с точностью до 5%). При эксперименте авторы применяли метод непосредственного нагрева слоя электрическим током, а слоевые процессы исследовали методом выгорающего слоя [6—9]. [c.33]


Смотреть страницы где упоминается термин Частицы, образование в результате: [c.334]    [c.38]    [c.123]    [c.40]    [c.357]    [c.332]    [c.164]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Частицы, образование в результате внутренних реакций



© 2025 chem21.info Реклама на сайте