Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Показатели прочности при циклических деформациях

    Каркасные резины. Эти резины применяются для обкладки кордного полотна и для резиновых прослоек. Требования к каркасным резинам обусловливаются работой каркаса шины при многократных циклических деформациях. Основными требованиями являются высокая эластичность, выносливость при многократных деформациях, малые гистерезисные потери и теплообразование, хорошие показатели по старению и теплостойкости. Каркасные резины могут иметь меньшее сопротивление разрыву и раздиру, чем протекторные. Прочность каркасных резин находится в пределах 100—300 кгс/см , сопротивление раздиру 40— 100 кгс см.  [c.159]


    Прочностные показатели многих материалов определяют на разрывных машинах, которые благодаря использованию целого ряда приспособлений являются самым универсальным испытательным оборудованием. На них можно производить испытания на растяжение, сжатие, изгиб и циклические деформации. Указанным видам деформации могут подвергаться резины, текстильные, резино-тканевые материалы, эбонит, картон, бумага, кожа, пленки, металлическая проволока, нитки, а также готовые изделия шнуры, ремни, транспортерные ленты и другие резино-технические изделия. С помощью разрывных машин можно определять прочность связи между материалами в многослойных системах. [c.74]

    ПОКАЗАТЕЛИ ПРОЧНОСТИ ПРИ ЦИКЛИЧЕСКИХ ДЕФОРМАЦИЯХ [c.289]

    Среди механических факторов, которые могут привести к образованию дефекта в покрытии, следует в первую очередь назвать нагружение на сжатие и на удар. Другими характерными нагрузками и показателями механической прочности являются силы, вызывающие срез и циклический изгиб, сопоставляемые с прочностью сцепления или с прочностью на отрыв покрытия, а также деформации, сопоставляемые с величиной деформации покрытия при разрыве. Сжимающие силы могут возникнуть, например, при воздействии камней на покрытие подземного трубопровода. Напротив, ударные нагрузки могут быть более разнообразными по видам и величине такие нагрузки возможны на всех стадиях транспортировки и укладки труб и фитингов с покрытиями. Практические нагрузки при транспортировке и укладке не могут быть определены по механическим напряжениям с такой точностью, чтобы лабораторные испытания могли бы дать результаты измерений, пригодные для непосредственного использования. Поэтому для оценки наряду с лабораторными испытаниями, проводимыми при определенных условиях, нужны и полевые, проводимые в условиях, близких к практическим, с имитированием практических нагрузок нужен также и практический опыт. Для покрытий труб были проведены все три стадии испытаний их результаты обсуждаются далее с целью оценки эффективности различных систем покрытия и с целью определения необходимой толщины слоя для конкретной системы покрытия [3]. [c.151]

    Из литературных данных известно, что наводороживание стали особенно сильно проявляется в изменении усталостной прочности металла, характеризуемой способностью металла выдерживать знакопеременные циклические нагрузки без разрушения [2, 138]. Нами производилось сравнение чувствительности метода скручивания проволочных образцов и метода усталостных испытаний. Для проведения усталостных испытаний применялась установка, подобная описанной в работе [139]. Ее устройство позволило создавать знакопеременные нагрузки во вращающемся деформированном по дуге проволочном образце, один конец которого закреплялся в шпинделе быстроходного электромотора, а второй — в патроне счетчика оборотов. Принцип работы установки заключается в чередовании деформаций сжатия и растяжения при повороте образца на каждые 180°, т. е. мы имеем усталостную машину с симметричным циклом. Показателем выносливости служит количество циклов, выдерживаемых проволочным образцом до разрушения. В табл. 1.4 приведены некоторые результаты работы [140], позволяющие сравнить чувствительность двух последних методов. Как видно из таблицы, метод испытания на усталость более чувствителен в случае слабого наводороживания образцов, однако проигрывает методу скручивания в воспроизводимости результатов. При исследовании действия тех или иных факторов на наводороживание стали мы широко пользовались методом испытания пластичности проволочных образцов при скручивании, так как он является достаточно чувствительным к наводороживанию и требует незначительных затрат времени и материала на изготовление образцов. [c.39]


    Еще большее значение имеет изучение так называемой усталостной прочности волокна под действием многократных, небольших по величине нагрузок, при которых волокно после каждого цикла нагрузка — разгрузка получает короткий отдых. Такое воздействие в большей степени отвечает реальным условиям эксплуатации текстильных изделий. При этом в волокне накапливаются практически необратимые деформации (так как при кратковременном отдыхе волокна релаксационные процессы полностью не заканчиваются) и уменьшаются обратимые деформации. Это явление и называется усталостью волокна. При действии таких циклических нагрузок ухудшаются механические показатели волокна. Усталостная прочность характеризуется числом циклов (нагрузка, разгрузка, отдых), выдерживаемых волокном до разрыва. Чем больше число циклов деформаций, выдерживаемых волокном, тем выше его усталостная прочность. [c.121]

    Различают несколько основных режимов деформаций, при которых определяют соответствующие показатели прочности режим постоянства деформирующего напряжения режим постоянства скорости нагружения режим постоянства скорости разгружения режим постоянной скорости деформации, который в большинстве случаев заменяется неадеква1 ным ему режИ]у<0м 11бШянной ско-" рости растяжения (в последнем случае аппаратурное оформление сравнительно легко обеспечивает постоянство скорости перемещения одного из зажимов) режим циклического нагружения. Особо следует выделить режим деформации в условиях воздействия агрессивных сред. Если скорость нагружения достаточно велика, то испытание носит характер удара. Прочность при таком режиме характеризуется величиной ударной вязкости. В последние годы все больший интерес со стороны исследователей прочности полимерных материалов проявляется к показателям резания [4, с. 386—404]. [c.29]

    Эта характеристика определяется как потеря прочности при его постоянном или циклическом нагружении растяжением, сжатием, кручением. Указанный показатель определяется величиной обратимой деформации или вязкостью КМУП. При постоянстве контактной поверхности между волокном и связующим и модуля упругости под нагрузкой сохраняемость увеличивается. Эти условия достигаются понижением внутренних напряжений при усадке в процессе отверждения [9-40]. Снижение усадочных напряжений в композитах уменьшает скорость накопления повреждений. В результате уменьшение модуля упругости во времени при постоянной температуре становится незначительным. В зависимости от вида нагружения (статического или /синами-ческого) сохраняемость изменяется. [c.536]

    В работе H.A. Махутова отмечено, что предпочтение следует отдать методике расчета не по напряжениям, а по деформациям. Преимущество ее состоит в том, что в рассмотренные деформационные критерии статического, циклического и хрупкого разрушения входит комплекс основных характеристик механического поведения прочность Oj, Og-, пластичность Фв Фк показатели упрочнения в неупругой области АП, с параметры диа- [c.152]


Смотреть страницы где упоминается термин Показатели прочности при циклических деформациях: [c.123]   
Смотреть главы в:

Механические испытания резины и каучука -> Показатели прочности при циклических деформациях




ПОИСК





Смотрите так же термины и статьи:

Прочность циклическая



© 2025 chem21.info Реклама на сайте