Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размеры кристаллитов полипропилена

    Размеры кристаллитов у большинства кристаллических полимеров обычно заключены в интервале 50—500 А. У ряда кристаллических полиолефинов (полиэтилен, полипропилен), образующих пластинчатые кристаллы, толщина пластин (один из параметров, характеризующих размеры кристаллита) составляет 100—150 А. Если учесть, что длина полимерной цепи равна примерно 10 А, то оказывается, что размеры кристаллитов иа несколько порядков меньше длины цепи. В связи с этим совершенно естественным кажется вывод о том, что кристаллиты в гибкоцепных полимерах образованы складками полимерных цепей (рис. 19). [c.48]


    В заключение раздела отметим интересный случай обратимого растяжения полимера при очень низких темп-рах (ниже —100 °С). В этих условиях аморфный полимер (напр., атактич. полипропилен) очень хрупок и при нагружении разрушается практически без заметной деформации. Однако, напр., изотактический хорошо закристаллизованный полипропилен, будучи охлажденным столь же глубоко, способен растягиваться на многие десятки процентов, причем это растяжение оказывается обратимым прп снятии нагрузки и нагревании полимер полностью восстанавливает исходные размеры. Очевидно, хорошо выраженная кристаллич. структура позволяет проходить специфическим скольжениям и сдвигам, когда одна часть кристаллита съезжает по другой. Но в отличие от низкомолекуляр-ных кристаллов здесь остается связь между частями кристаллита (цепные молекулы переходят из одной части в другую), что и обусловливает восстановление формы кристаллита при нагревании. [c.259]

    Полиэтилен, полипропилен и найлон-6 — наиболее изученные полимеры. Особенности плавления деформированных образцов этих полимеров, а также других виниловых полимеров, полиоксисоединений, полиэфиров и полиамиде обсуждаются ниже. В каждом случае последовательно рассмотрено плавление деформированных образцов, полученных тремя способами. Первым описано плавление растянутых или прокатанных образцов (разд. 4.4.3 и 4.4.4). Эти образцы в процессе отжига при температурах, близких к температуре плавления, имеют тенденцию усаживаться до размеров перед деформацией [ 12]. Затем рассмотрено плавление кристаллов, образовавшихся при кристаллизации в процессе течения или растяжения растворов или расплавов. Последними разобраны особенности плавления образцов, растянутых под давлением. Эти две последние группы образцов не дают заметной усадки, если при кристаллизации полимерные цепи распрямляются [12]. Общие вопросы кристаллизации, вызванной напряжением, рассмотрены в недавних обзорах [21, 218] и обсуждены в разд. 6.2.2, 6.3.2 и 6.3.3. [c.268]

    В кристаллическом полимере существуют кристаллические и аморфные области. Кристаллические области (размером порядка 100 А) не являются совершенными кристаллами, а представляют собой только участки высокоупорядоченного состояния с диффузными границами. Одна полимерная цепь может проходить через несколько аморфных и кристаллических областей. Недавно было обнаружено, что некоторые полимеры способны давать истинные монокристаллы [33, 48, 83]. Полиэтилен, осажденный из разбавленного раствора, может образовывать ромбовидные пластинки толщиной от 50 до 100 А и от 1 до 2 мк в диа метре. Оси цепей перпендикулярны плоскости пластинок У поверхностей пластинок цепи имеют складчатую форму так как длина цепочки больше толщины монокристалла Форма цепей в кристалле может быть различной для раз ных полимеров. В кристаллическом полиэтилене, напри мер, углеродный скелет имеет плоскую зигзагообразную форму. Другие полимеры предпочтительно кристаллизуются в форме спирали. Примерами служат изотактический полистирол и полипропилен [58]. [c.9]


    На степень ориентации влияют также размеры кристаллических структур (сферолитов) чем они мельче, тем лучше ориентируется пленка. При малой скорости вытяжки на начальных стадиях ориентации сферолиты деформируются, удлиняются в направлении вытяжки, а ламели разворачиваются внутри сферолитов таким образом, что оси с кристаллов становятся параллельными направлению ориентации (см. рис. 1.15, а). При повышении температуры наряду с с-ориентацией происходит ориентация оси а кристаллов по направлению вытяжки, но при увеличении коэффициента вытяжки оси с кристаллитов вновь ориентируются преимущественно вдоль пленки. Для кристаллизующихся полимеров, таких, как полиэтилен и полипропилен, максимальная степень ориентации достигается вблизи температуры плавления. [c.178]

    Из-за отсутствия сильных полярных групп и гибкости макромолекулярных цепей полипропилен имеет очень низкую температуру стеклования (около —50°С). Поэтому кристаллизация волокон во время их формования из расплава происходит быстро и при выходе из шахты они практически полностью закристаллизованы. Однако большая скорость охлаждения во время формования приводит к образованию неустойчивых (смектических) форм кристаллов, которые при нагревании изменяют решетку и размеры, а следовательно, и свойства волокон. [c.204]

    Изотактический полипропилен (ИПП) хорошо подходит для производства термостойкой, глянцевой пленки. ИПП имеет более высокую прочность и более высокую температуру плавления, чем у других полиолефинов. С помош ью быстрого охлаждения и/или применяя агенты, ускоряющие образование центров кристаллизации, можно добиться небольшого размера кристаллов и таким образом производить высокопрозрачную глянцевую пленку. Реологические свойства неидеальны для переработки экструзией с раздувом рукава, поэтому используется двухстадийная экструзия с раздувом. Синдиотактический полипропилен (СПП) становится все более доступным благодаря применению полимеризации на металлоценовом катализаторе. Из СПП полз ается более эластичная пленка, чем из ИПП. Полипропилены обладают множеством преимуществ перед полиэтиленами благодаря прочности, термостойкости, прозрачности и глянцевой поверхности. Материал особенно подходит для производства пленок с более длительным сроком службы [6]. [c.19]

    Различные виды надмолекулярной организации зависят от строения молекул, их состава, условий полимеризации, переработки, внешних условий обработки, т. е. почти от всех параметров, учитываемых при изготовлении полимеров. Размеры и формы некоторых видов надмолекулярной организации, образующихся на начальной стадии полимеризации гомополимера, показаны на примере волокнистых и глобулярных структур Уристера [21] для полиолефииов. Эти структуры получены в процессе полимеризации из газовой и жидкой фаз при низкой и высокой эффективности титановых, ванадиевых, хромовых и алюминиевых катализаторов. На рис. 2.6—2.8 воспроизводятся электронные микрофотографии образующихся таким образом полимерных структур [21]. При низкой эффективности катализатора в полипропилене формируются глобулы диаметром 0,5 мкм (рис. 2.6), а при высокой — волокна длиной в несколько микрометров (рис. 2.7). Диаметр волокна согласуется с размером боковой стороны основного каталитического кристалла и изменяется в пределах 0,37—2 мкм при изменении ширины кристалла Т1С1з в пределах 5—50 нм. Образцы полиэтилена, изготовленные с помощью катализатора ИСЦ— [c.31]

    Полипропилен. Полимеризация пропилена приводит к образованию высокомолекулярных полипропиленов двух типов. Один из этих материалов аморфен и сравнительно каучукоподобен второй кристалличен. Кристаллическая фракция была исследована [64] рентгеноструктурным методом удалось определить строение кристалла и основные размеры молекулы полимера. Эти работы показали, что кристаллический полипропилен обладает изотактическим строением, причем молекулы в нем кристаллизуются, как показано на рис. 3, в виде спиралей с тремя осями симметрии. Изотактический кристаллический полипропилен можно вытягивать в волокна, обнаруживаюш ие присутствие [c.293]

    Пластинчатые кристаллы наблюдали у многих полимеров (полиэтилен, полипропилен, поликапрамид, ацетат целлюлозы и др.). Такие кристаллы имеют размеры до нескольких десятков микрон (см. рис. 4). [c.35]

    Механизм образования центров кристаллизации под влиянием соответствующих солей металлов еще не выяснен, однако установлено, что агенты, вызывающие образование зародышей кристаллов, должны обладать необходимыми молекулярными размерами, стереохимической структурой и полярностью это, по-видимому, обеспечивает более благоприятный режим кристаллизации и более совершенную икроструктуру полимера. Некоторые полимеры при достаточно быстром охлаждении могут быть получены в аморфном состоянии, например изотактический полистирол, полиэтилентерефталат и др., однако полиэтилен нельзя получить полностью в аморфном состоянии. Это, по-видимому, связано с высокой симметрией молекул, а также малой величиной периода идентичности (табл. 11). Полипропилен имеет больший период идентичности, и поэтому он может получаться с менее совершенной смектической структурой. [c.45]



Смотреть страницы где упоминается термин Размеры кристаллитов полипропилена: [c.188]    [c.266]    [c.420]    [c.28]    [c.141]    [c.261]    [c.265]    [c.421]    [c.211]    [c.71]    [c.157]   
Смотреть главы в:

Полипропилен -> Размеры кристаллитов полипропилена




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2025 chem21.info Реклама на сайте