Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация этилена по способу условия

    По координационно-ионному механизму способно полимеризоваться большинство известных ненасыщенных (напр., этилен и др. а-олефины, ацетилен, дисны, циклич. олефины) и гетероциклич. (оксиды олефинов и др.) мономеров. Для нек-рых из них (напр., для пропилена и высших а-олефинов, циклич. олефинов) это единств, способ образования высокомол. полимеров. Более распространена координационно-ионная гомополимеризация, менее-совместная полимеризация двух и более мономеров, причем обычно одного хим. класса (этилен с пропиленом или др. олефинами, бутадиен с изопреном и т. п.). Сополимеризация мономеров разных классов (напр., диенов с а-олефинами) протекает в специфич. условиях и приводит к образованию сополимеров с правильным чередованием мономерных звеньев разного типа, т.наз. альтернантных сополимеров (таковы, напр., сополимеры бутадиена с пропиленом или акрилонитрилом). [c.465]


    Получение полиэтилена нри высоком давлении. Полиэтилен впервые был получен при высоком давлении английской фирмой Империал Кемикалс Индастри [59]. Способ получения заключается примерно в том, что этилен при температуре 120—130° и давлении 1000— 20ОО ат полимеризуется в присутствии небольших количеств чистого кислорода. Молекулярный вес полимернзата получается тем больше, чем ниже температура полимеризации. Практически, однако, оптимальной рабочей температурой признана 120—130°, потому что уже при этих условиях температура плавления нолимеризата составляет около 110°. Полимеризация проводится при полном отсутствии растворителя. Содержание кислорода лежит практически в пределах 0,05—0,1%, считая на этилен. Время пребывания этилена в установке составляет 2—6 мин. при 10—15%-ном превращении этилена за один проход через печь. Схема работы при получении полиэтилена представлена на рис. 137. [c.222]

    Полимеризация этиленимина в присутствии органических ди- и полигалогеиидов и его сополимеризация с N-ацетилэтиленимином и другими К-замещенными этилен-иминами предложены химиками фирмы Доу Кемикал [33, 34, 68] для получения высокомолекулярного полиэтиленимина. Полимеризация по этому способу проводится в водном растворе при температурах 50—100° С с использованием 0,2—2,0 мол. % отмеченных инициаторов. Конец полимеризации устанавливался по достижению максимального значения вязкости, которое соответствует практически полному превращению мономера. Наиболее эффективным инициатором этой группы является 1,3-дихлорпропан. Кроме того, использовался дихлорэтан, р,Р -дихлорэтиловый эфир, хлороформ и хлористый метилен. Так же как и в двух предыдущих случаях, основным фактором, определяющим степень полимеризации, является относительная пропорция мономера и инициатора (рис. 8). Существенным является также выбор инициатора. Так, например, полимеризацией в одинаковых условиях в присутствии дихлорэтана и 1,3-дихлорпропана получены образцы полиэтиленимина с вязкостью 1,21 и 3,82 сст соответственно. Наконец, еще одним фактором, определяющим молекулярный вес полученного полимера, является концентрация мономера в реакционной смеси. Рисунок 9 иллюстрирует эту зависимость. [c.55]

    Мы сочли нужным начать исследование с простейших членов ряда (этиленового.— В. К.),— говорит Бутлеров,— и старались прежде всего уплотнить этилен. Опыты, которые были предприняты нами с этой целью, не привели к образованию полимеров, но доставили случай познакомиться с условиями, при которых этилен легко превращается в обыкновенный спирт - 14]. Пропилен же удалось подвергнуть полимеризации посредством серной кислоты и очень легко посредством фтористого бора изобутилен уплотнялся в присутствии серной кислоты. Ввиду того что Бутлеров в этих работах придерживался своего традиционного принципа — постепенного усложнения простейших соединений при относительно невысоких температурах и под слабым влиянием химических реагентов, в дальнейшем он остановился на более подробном изучении лишь уплотнения изобутилена. Дело в том, что этот последний углеводород дает возможность наблюдать самые простые случаи последовательности полимеризации, а именно удвоение и далее утроение молекул, совершающееся при действии серной кислоты. В процессе выявления условий, при которых происходит димеризация изобутилена, Бутлеров подметил очень важный для дальнейшего исследования факт. Прямое действие серной кислоты различных концентраций на изобутилен приводит, как правило, к сложной смеси продуктов и вызывает по меньшей мере утроение изобутилена [15, стр. 323]. Зато весьма удобно ведет к получению удвоенного продукта взаимодействие разбавленной кислоты при 100° С не с изобутиленом, а с триметилкарбинолом. Однако вскоре Бутлеров нашел, что исходным продуктом для димера может быть и сам изобутилен для этого надо было только поступать так, чтобы на первой стадии реакции из него мог образоваться триметилкарбинол. В этом случае способ получения [c.61]


    Получение полиэтилена при высоком давлении. Этилен вследствие полной симметричности и неполярности молекул вступает в реакцию полимеризации с большим трудом. Чтобы заставить-молекулы этилена соединиться друг с другом, необходимо создать весьма жесткие условия, а именно давление до 1500 ат (в некоторых случаях до 3000 ат) и температуру порядка 200° С. На применении таких высоких давлений основан один из способов получения полиэтилена, который до 1954—1955 гг. был единственным. [c.94]

    Между тем по способу Циглера в настоящее время можно поли-меризовать этилен с достаточно высокой скоростью при атмосферном давлении и 50°, причем в зависимости от катализатора можно получить продукты с молекулярным весом от 30 ООО до 1 ООО ООО и более [17]. На катализаторах Циглера можно также проводить полимеризацию пропилена, бутилена, бутадиена и изопрена и при соответствующих условиях получать только димеры или димеры и тримеры. Таким способом можно получить а-бутилен из этилена, гексилен из пропилена и октилен из бутилена [17]. Как новейший результат следует указать способ получения циклододекатриена из бутадиена. Наконец, необходимо также упомянуть процесс Циглера, основанный на взаимодействии высших олефинов с триалкил-алюминием, причем образующиеся высококипящие остатки, связанные с AI, под действием воздуха и воды превращаются в высшие спирты [18]. Одновре.менно с Циглером рядом исследователей были проведены работы по получению полиэтилена при относительно низких давлениях. Фирмы Филлипс и Стандард ойл ко , Уайтинг (Индиана) разработали процессы получения полиэтилена в растворе при сравнительно мягких условиях в присутствии твердых катализаторов. Для осуществления этих процессов в США строятся несколько установок. Суммарное производство полиэтилена в США в 1957 г. составило 400 ООО m, причем V.-s этого количества получали различными способами полимеризации при низких дав- [c.361]

    В дальнейшем в качестве исходного сырья в синтезе изопрена будет использоваться изобутилен, содержащийся во фракциях С4, выделенных из продуктов пиролиза на этилен жидких углеводородов, из крекинг-газов нефтеперерабатывающих заводов, а также из фракции С4, получаемой в производстве изопрена из изопентана способом двухстадийного дегидрирования. В этих фракциях при значительном содержании в них н-бутиленов (35—50 вес.%) и бутадиена возможно взаимодействие последних с формальдегидом с образованием изомерных диоксанов, дающих при расщеплении побочные продукты. Ввиду этого содержание бутадиена во фракциях не должно превышать 0,5 вес.%, поскольку он превращается в условиях синтеза в циклопентадиен, который является наиболее вредной примесью в изопрене, используемом для полимеризации. [c.143]

    Этилен при полимеризации дает уже упомянутую пластмассу — полиэтилен. До недавнего времени превращение этого газа в твердое вещество осуществлялось лишь при очень высоких давлениях (до 2000 атмосфер), что, понятно, удорожало стоимость пластмассы. Ныне эта трудность преодолена. Найдены способы получения полиэтилена при 35—40 атмосферах и даже в условиях нормального давления. Ученые и инженеры создали надежную и относительно дешевую технологию производства. [c.162]

    Необходимая четкость разделения и чистота газовых фракций зависят от условий их дальнейшей технологической переработки. Так, для получения полиэтилена глубокой полимеризацией под давлением выше 1000 ати требуется необычайно высокая чистота исходного этилена (99,9%). Однако новейшие способы полимеризации при низком давлении над гетерогенными катализаторами и в присутствии растворителей позволяют снизить чистоту сырья до 95% [24]. Для получения этанола гидратацией над фосфорнокислым катализатором требуется этилеп 97 %-ной чистоты, а старейший способ производства этилового спирта и эфира при помощи серной кислоты позволяет использовать газ с 35—95%-пым содержанием С2Н4. При алкипирова-пии бензола этиленом в присутствии хлористого алюминия желательна чистота этиленового сырья не ниже 90%, а с фосфорнокислым катализатором может использоваться этан-этиленовая смесь. Окись этилена получается и 95%-ного этилена. [c.158]

    Способ получения полиэтилена в трубчатом реакторе с внутренней тонкостенной трубой (рис. 2.15) (пат. 157859. / 1глия). Внутрь трубы высокого давленш 2 коаксиально вставлена тонкостенная труба I, так что полимеризация проводится в кольцевом зазоре. Труба 1 рассчитана только на небольшой перепад давления и имеет поэтому сравнительно малую толщину стенки, обеспечивающую хороший теплоотвод. Этилен разогревается во внутренней полости трубы 1 до температуры начала реакции, смешивается с частью холодного этилена и вводится в кольцевую реакционную зОну 2, куда подается инициатор. Разогрев этилена осуществляется за счет теплоты реакции и это позволяет существенно повысить конверсию. По расчетам авторов, для приведенных в патенте условий (подача этилена 20 т/ч, длина реактора 564 м, давление реакции 245 МПа) конверсия увеличивается с 21,5 до 28,6%. [c.31]


    Другим важным достижением в этой области является полимеризация этилена при низком давлении по Циглеру [172]. По этому способу, применяя смешанный катализатор, например триэтил-алюминий и четыреххлористый титан в индиферентных растворителях (дизельное масло Фишера—Тропша, так называемый али-фатин), можно полимеризовать этилен в мягких условиях — при комнатной температуре и атмосферном давлении. При этом по еще не выясненному до конца механизму (вероятно, через соединения двухвалентного титана) образуется неразветвленная линейная макромолекула с молекулярными весами от 10 тысяч до 2—4 миллионов в зависимости от выбора катализатора. Не говоря уже о большом техническом значении такого процесса, исследования в этом направлении позволят получить новые, очень существенные сведения [c.251]


Смотреть страницы где упоминается термин Полимеризация этилена по способу условия: [c.131]    [c.1112]    [c.111]    [c.81]    [c.54]   
Катализ в промышленности Том 1 (1986) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен полимеризация



© 2025 chem21.info Реклама на сайте