Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматический секстет

    Представление о резонансе часто используют для качественного описания строения молекул, но по мере усложнения структуры (скажем, при переходе от бензола к нафталину, пиридину и т. п.) количественные расчеты валентных схем становятся все более затруднительны. Поэтому для решения волновых уравнений чаще применяют другой метод, метод молекулярных орбиталей. Если с точки зрения этого метода качественно рассмотреть молекулу бензола, то можно видеть, что каждый атом углерода, связанный с тремя другими атомами, использует 5р -орбитали для образования а-связей, так что все 12 атомов лежат в одной плоскости. Кроме того, каждый атом углерода имеет еще р-орбиталь, которая может в равной мере перекрываться с двумя соседними р-орбиталями. Перекрывание шести таких орбиталей (рис. 2.1) дает шесть новых орбиталей, три из которых, связывающие (они показаны на рис. 2.1), называются я-орбиталями. Все три я-орбитали занимают примерно одинаковое пространство, одна из них имеет самую низкую энергию, а две другие являются вырожденными. Каждая орбиталь имеет узловую область, которая является плоскостью кольца, и разделяется иа две части, расположенные над плоскостью и под ней. Две высокоэнергетические орбитали (рис. 1, б и е) имеют еще другую узловую область. Шесть электронов, образующих тороидальное облако, называют ароматическим секстетом. Порядок связи углерод — углерод, вычисленный по методу молекулярных орбиталей, составляет [c.48]


    Гетероциклические системы. Явление ароматичности не ограничивается карбоциклическими соединениями. Замещение какого-либо из углеродных атомов в перечисленных выше соединениях на другие атомы дает новые ароматические системы при условии, что я-электронная система не изменяется. Замещение СН-групп в бензоле на изоэлектронный (т. е. содержащий такое же число электронов) азот приводит к образованию серии гетероциклических ароматических соединений пиридин, пиридазин, пиримидин и пиразин. Возможно и дальнейшее замещение. Во всех этих соединениях циклическая бя-электрон-ная система ( ароматический секстет ) использует по одному электрону от каждого атома кислорода и азота, оставляя по свободной паре электронов на р -орбитали каждого азота на месте бензольной связи С—Н. В результате эти гетероциклические соединения обладают слабоосновными свойствами, основность свободной электронной пары на р -орбитали значительно меньше, чем свободной пары на 5рЗ-орбитали (ср. С—Н-кислотность в алканах и алкинах, разд. 8.2.1). Циклопен-тадиенид-анион можно также рассматривать как родоначальное карбоциклическое соединение серии гетероциклических ароматических соединений. Фуран и тиофен имеют ароматический секстет, в котором по одному электрону дают каждый из четырех углеродных атомов (т. е. две двойные связи), а два электрона являются свободной парой кислорода или серы. В пирроле [c.306]

    Свободная пара электронов азота пиридина располагается на sp -орби-тали. Чем больше s-характером обладает орбиталь, тем менее она вытянута, тем ближе электроны расположены к ядру и удерживаются ядрами более прочно. Это приводит к снижению основности. Однако в молекуле пиридина я-электронное облако поляризовано к атому азота, что делает пиридин более сильным основанием, чем это могло быть в отсутствие такого влияния, но значительно более слабым, чем триметиламин, в молекуле которого азот в sp - o-стоянии. С сильными кислотами пиридин образует соли, сохраняя при этом свой ароматический характер. В молекуле пиррола пара электронов азота включена в ароматический секстет. При действии сильных кислот пиррол также образует соли, но теряет при этом ароматичность и, став диеном, полимеризуется. [c.242]

    Углеводороды, в отличие от сульфидов, в среде водной серной кислоты практически не протонируются и остаются поэтому в углеводородной фазе [19, 20]. Тиофены (наибольшая после сульфидов группа сернистых соединений нефтяных фракций) слабо протонируются в растворах серной кислоты вследствие участия неподеленной электронной пары атома серы в системе конъюгированных связей с образованием устойчивого ароматического секстета. [c.154]


    Кроме этого общего метода каждый из рассматриваемых гетероциклов может быть синтезирован также специфическими методами. В ароматический секстет рассматриваемых гетероциклов входят четыре я-электрона двух кратных углерод-углеродных связей и два р-электрона гетероатома. В результате их сопряжения и делокализации эти соединения в значительной степени утрачивают как склонность диеновой системы к реакциям 1,4- и 1,2-присоединения, так и свойства, характерные для этих же гетероатомов в насыщенных простых эфирах, ди- [c.509]

    Так как р-электроны атома азота участвуют в образовании ароматического секстета, атом водорода группы N1-1 пиррола приобретает протонную подвижность. По этой причине пиррол способен реагировать с металлическим калием, безводным гидроксидом калия и трег-бутоксидом калия, амидами калия и натрия и с магнийорганическими соединениями  [c.522]

    Не только бензольный цикл является ароматическим ароматическими могут быть также многие гетероциклические аналоги, содержащие в цикле один или несколько гетероатомов [45]. Если гетероатомом является азот, его неподеленная электронная пара не участвует в ароматической системе, и ароматический секстет практически не нарушается. Поэтому такие производные, как N-оксиды или пиридиниевые ионы, обладают свойствами ароматических соединений. Однако для азотсодержащих гетероциклов канонические формы, например 23, имеют гораздо большее значение, чем для бензола. Если гетероато- [c.65]

    Электронную интерпретацию ароматичности впервые предложил Робинсон, который еще в 1925 г. выдвинул идею устойчивого ароматического секстета электронов. [c.75]

    В первом приближении можно считать, что Ср является донором за счет ароматических секстетов я-электронов, акцепторными же являются две М-, одна 45- и три - р-орбитали Ре +. Шесть -электронов Ре + при этом принудительно спариваются (диамагнетизм) и в свою очередь участвуют в дативных связях с кольцами, у которых акцепторными являются л -орбитали. На атоме Ре в результате остается небольшой положительный заряд, а молекула дополнительно стабилизируется. [c.113]

    Подавляющее большинство ароматических соединений имеют в цикле замкнутое кольцо из шести электронов (ароматический секстет), и мы рассмотрим их в первую очередь [44]. [c.65]

    Прочие системы, содержащие ароматический секстет [c.73]

    В случае бензоидных систем — это циклогексадиенильные катионы. Легко видеть, что для структур типа 1 уже не характерна повышенная стабильность, связанная с ароматическим секстетом электронов, хотя этот ион стабилизирован собственным резонансом. Аренониевые ионы представляют собой высокореакционноспособные интермедиаты, которые стремятся к стабилизации путем дальнейшей реакции, хотя такие интермедиаты все же удалось выделить (см. ниже). [c.305]

    Карбокатионы могут стабилизироваться различными путями (см. т. 1, разд. 5.4), но наиболее вероятный путь [6] для ионов этого типа состоит в выбросе либо Х+, либо +. Ароматический секстет при этом восстанавливается, и этот процесс в действительности представляет собой вторую стадию обсуждаемого [c.305]

    Таким образом, ароматическими называются соединения, в молекулах которых имеется плоская циклическая структура, содержащая замкнутое делокализованное п-электронное облако. Шесть я-электронов в бензоле называют ароматическим секстетом. [c.311]

    Раскройте сущность понятий ароматичность , ароматический секстет , бензольное ядро , делокализация я-связей , правила ориентации в бензольном ядре , заместители первого и второго рода . [c.354]

    Из резонансных структур, кроме прочего, следует, что свободная электронная пара аминогруппы увеличивает электронную плотность я-системы ядра, причем прежде всего в орто- н пара-положениях. Это способствует электрофильному замещению ароматических аминов. Еще в больщей степени это явление и связанное с ним уменьщение основности наблюдается для пиррола, где свободная электронная пара участвует в образовании ароматического секстета я-электронов. [c.147]

    С точки зрения электронных представлений, ароматический характер пиридинового ядра и сходства его с ядром бензола объясняется тем, что в его цикле создается характерное сочетание шести л-электронов, образующих устойчивый секстет электронов, обобщенных всеми атомами цикла (ароматический секстет ср. стр. 328 и 413) [c.430]

    В структурных формулах свободные электронные пары, включенные в ароматический секстет электронов, показаны внутри цикла, а свободные пары, не участвующие в образовании ароматического секстета, изображены вне цикла. [c.307]

    С этого времени ароматические свойства бензола начали объяснять, используя центрическую формулу Армстронга и Байера, дополненную высказанным еще Бамбергером положением о необходимости непременного наличия шести парциальных валентностей для появления ароматической устойчивости. После создания электронной теории валентности это положение было сформулировано Робинсоном как необходимость ароматического секстета электронов, который было предложено изображать в виде круга, вписанного в шестиугольник  [c.16]


    При изучении химических превращений тиофенов следует учитывать, что во многих случаях гетероатом серы и группа —СН=СН— бензольного кольца идентичны по химическому поведению. Гетероатом дополняет л-электронную систему до ароматического секстета, а также определяет направленность замещения в тиофе-новом кольце а-положения на несколько порядков активнее р-положений. Наиболее важны для тиофенов реакции электрофильного замещения и металлирования, дающие начало процессам получения многочисленных важных продуктов алифатиче- [c.252]

    Б. Группа —СН = СН — вносит в ароматический секстет два подвижных я-электрона. Ее замещение изоэлектрон-ными аналогами открывает путь к самым разнообразным соединениям  [c.76]

    Молекулы типа 5 и 6 называют дегидробензолами бензинами) или в общем виде аринами, а рассматриваемый механизм известен как механизм с образованием дегидробензола (ариновый механизм). От частиц, обсуждавшихся в т. 1, гл. 5, дегидробензолы отличаются тем, что каждый атом углерода в них четырехвалентен, однако, подобно упомянутым частицам, они также очень реакционноспособны. До настоящего времени не удалось выделить ни сам дегидробензол, ни какой-либо другой арин при обычных условиях, но в аргонной матрице при 8 К был получен устойчивый дегидробензол и сняты его ИК-спектры. Кроме того, определены спектры промежуточно образующихся дегидробензолов [31] нногда эти соединения можно уловить, например, с помощью реакции Дильса — Альдера (см. реакцию 15-47). Следует отметить, что дополнительная пара электронов не нарушает ароматичности. Ароматический секстет продолжает функционировать как замкнутое кольцо, а два дополнительных электрона просто локализованы на я-орбитали, которая охватывает только два атома углерода. Дегидробензол не имеет формальной тройной связи, поскольку в резонансный гибрид дают вклад две канонические формы (А и Б). Упомяну- [c.12]

    Вычисленный дипольный момент для структуры I составляет 1,750, для структуры 11—220 фактический дипольный момент соединения 4,050, т. е. в действительности облако электронов носит промежуточный характер между пироновой и пирилиевой структурами. Чтобы приобрести ароматический секстет, циклопентадиен должен к своим четырем я-электронам получить еще два. Это достигается элиминированием протона, что и объясняет кислые свойства данного углеводорода. [c.77]

    Стремление циклогептатриенильной системы отдать один электрон, а циклопентадиенильной принять электрон для образования ароматических секстетов открывает возможность объединения этих остатков в одной молекуле азулена. [c.81]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]

    Пяти- и семичленные циклы также могут иметь ароматический секстет. Если иятичленный цикл содержит две двойные связи и все пять атомов имеют неподеленные электронные пары, то в цикле будет пять р-орбпталей, которые при иере-крываиии могут образовать иять новых орбиталей три связывающие и две разрыхляющие. На этих орбиталях располагается шесть электронов по одному электрону от четырех р-орби- [c.68]

    Полной противоположностью циклопентадиена является циклогептатриен (35), сове 5шенно не обладающий необычными кислотными свойствами. Без теории ароматического секстета это явление было бы трудно объяснить если судить по резонансным формам или простому рассмотрению орбитального перекрывания, соединение 36 должно быть так же устойчиво, как циклопентадиенил-анион (31). Поскольку 36 получен только в растворе [68], он менее устойчив, чем 31, и намного менее устойчив, чем катион 37, являющийся продуктом отрыва от 35 не протона, а гидрид-иона. Шесть электронов двойных связей в 37 перекрываются с вакантной орбиталью седь- [c.70]

    Еще одним примером семичленного цикла с некоторой степенью ароматического характера является тропой (38). В этой молекуле было бы возможно существование ароматического секстета, если бы два электрона связи С = 0 были бы смещены от кольца в сторону электроотрицательного атома кислорода. Действительно, тропоны — устойчивые соединения, а тропо-лоны (39) найдены в природе [72]. Однако измерения дипольных моментов, ЯМР-спектров и дифракции рентгеновских лучей показывают, что тропоны и трополоны представляют собой [c.71]

    Как уже говорилось, в ионе тропилия ароматический секстет окружает семь атомов углерода. Известен аналогичный ион, в котором секстет электронов принадлежит восьми углеродным атомам,— 1,3,5,7-тетраметилциклооктатетраен-дикатион [c.72]

    Спектры ПМР соединения 85 (называемого кекуленом) показывают, что в том случае, когда возможно образование или ароматического секстета, или системы с большим числом электронов, предпочтительно образуется секстет [193]. Для 48л-элект-ронпого соединения 85 теоретически возможны две структуры 85а с конденсированными бензольными циклами и 856, представляющая собой [30]аннулен снаружи и [18]аннулен изнутри. В спектре ПМР этого соединения наблюдается три пика (при 7,94, 8,37 и 10,456 с соотношением интенсивностей 2 1 1), соответствующие трем группам протонов. Пик при 7,946 относится [c.88]

    С точки зрения метода МОХ указанные ранее свойства бензола определяются строением его электронной оболочки. Шесть л-электронов бензола размещены на трех связывающих глубоко расположенных МО (рис. 8.3). Повышенная стабильность соединений с п-электронным (ароматическим) секстетом давно была известна химикам, однако именно Э. Хюккель дал ему ясное теоретическое объяснение высокая устойчивость циклических сопряженных полиенов (аннуленов) объясняется особенностями строения их тс-элект-ронной оболочки и присуща лишь тем из них, которые имеют полностью замкнутую электронную оболочку, содержащую максимальное число электронов на связывающих МО и не содержащую электронов на МО других типов. [c.265]

    XVI, ное в качественном отношении описание электронной структуры и природы связи в металлоценах. Вначале устойчивость структуры (XVI) металлоценов объяснялась в соответствии с правилом Хюккеля (4л-ь2) стремлением пятичленных колец образовать ароматический секстет, что должно приводить к переносу заряда с атома Ре на кольца. Такая структура должна соответствовать электронному распределению типа Ре2+(СбН5)2 . Расчеты по РМХ в согласии с экспериментальными данными (табл. 56) показывают, однако, что на атоме железа находится значительно меньшей заряд—около +0,4е. Поэтому первоначальное предположение о донировании двух электронов с атома [c.307]

    В ферроцене ароматические секстеты п-электронов являются донорами, используя в качестве акцепторных две 3 -, одну 45- и три 4р-орбиталиРе , гибридизованные по схеме Образуются [c.88]


Смотреть страницы где упоминается термин Ароматический секстет: [c.436]    [c.112]    [c.69]    [c.69]    [c.92]    [c.92]    [c.318]    [c.416]    [c.220]    [c.316]    [c.111]    [c.88]    [c.307]    [c.22]   
Органическая химия (1974) -- [ c.0 ]

Курс теоретических основ органической химии издание 2 (1962) -- [ c.120 ]

Органическая химия (1972) -- [ c.102 , c.131 ]

Органическая химия (1972) -- [ c.102 , c.131 ]

Органическая химия Издание 2 (1976) -- [ c.111 ]

Курс физической органический химии (1972) -- [ c.189 , c.291 ]

Перспективы развития органической химии (1959) -- [ c.31 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Секстет



© 2025 chem21.info Реклама на сайте