Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дизайн химических реакций

    Оптимальные условия для протекания быстрых химических реакций создаются в случае выполнения отношения характерных времен химической реакции и смешения Тсм Тх. Изменяя геометрию (дизайн) зоны реакции, динамику, а также физические параметры жидких потоков, можно оптимизировать значения характеристик турбулентного смешения в соответствии со спецификой процесса, тем самым воздействуя на характер его протекания. Осуществление быстрых процессов в режиме вытеснения в турбулентных потоках, ограниченных непроницаемой стенкой, позволяет экспериментально оценить кинетические константы скорости реакции (показано на примере хлорирования бутилкаучука). [c.57]


    Для этой цели создаются новые катализаторы с прекрасным дизайном. Катализатор, будучи загруженный в реактор, должен работать на получение целевого продукта. Для того, чтобы выполнить задачи математического моделирования и оптимизации работы реактора, необходимо знание скоростей химических превращений на данном катализаторе. Другими словами, мы должны иметь математическое выражение, представляющее в явной форме зависимость скорости реакции от переменных состояния (концентраций, парциальных давлений, парциальных фугитивностей, температуры, давления), изменяющихся в ходе реакции в реакторе. Эти уравнения называем математической моделью кинетики или просто кинетической моделью. [c.67]

    Многие другие еоединения (такие как глины, некоторые цеолиты, слоистые сульфиды и др.) также имеют слоистую структуру, однако только СДГ обладают рядом уникальных свойств, важных для направленного синтеза наноматериалов. С одной стороны, слоистая структура СДГ устойчива для очень широкого спектра катионов и анионов. С другой стороны, количество анионов, присутствующих в межслоевом пространстве СДГ, определяется еоотрюшснисм М " М , которое легко поддается контролю при синтезе. Это позволяет получать СДГ заданного состава, и, следовательно, варьировать концентрацию реакционных центров в матрице. Кроме того, в силу высокой скорости диффузии газов в межслоевом пространстве, термическое разложение СДГ протекает с сохранением мотивов слоистой структуры. Это позволяет проводить химические реакции с участием анионов межслоевого пространства при повышенных температурах практически без разрушения матрицы, ограничивающей реакционную зону. Указанные свойства открывают широкие возможности химическою дизайна нанокомпозитных материалов на основе СДГ. [c.19]

    Исключительно высокие скорости и степень селективности ферментативных реакций с давних пор интригуют химиков-органиков. Многочисленные предположения, начиная с более чем столетней давности идеи ключ-замок Э.чи-ля Фишера и до более современной ковдегшии взаимоиндуцированного соответствия Кошланда были выдвинуты для объяснения этих явлений. Каковы бы ни были конкретные подробности различных интерпретаций, все они предполагают тот или иной род фиксации субстрата внутри полости активного центра конформационно подвижной молекулы фермента вблизи его реакционноспособных групп. Возникающее в результате взаимодействие между реакционными центрами фермента и реакционноспособной конформацией субстрата считается одной из главных причин высоких скоростей и селективности, свойственных ферментативным реакциям. Дизайн химических структур, пригодных для экспериментального исследования относительной важности различных факторов, определяющих скорости и селективность органических реакций как моделей определенных аспектов ферментативного катализа, был и остается областью, вызывающей напряженное внимание. [c.486]


    Из схемы 9.1 очевидно, что фундаментом всей органической химии являются углеводороды. От алканов происходят все остальные классы углеводородов. Из углеводородов в результате химических реакций замещения Н-атома С-Н-связи и присоединения реагентов по л-связям возникают основные классы функциональных производных углеводородов — галогенопроизводные, сульфопроиз-водные, нитросоединения, спирты, простые и сложные эфиры, альдегиды, кегоны и карбоновые кислоты. Дальнейшее химическое преобразование (химический дизайн) этих производных за счет замещения или химического видоизменения функциональных групп создает все труднообозримое многообразие полифунк-ционапьных органических соединений, в том числе аминокислоты, пептиды, и белки, жиры и углеводы, гетероциклы различной сложности, витамины, гормоны, нуклеотиды и нуклеиновые кислоты, ферменты. [c.317]

    При разработке биотехнологического процесса в современных условиях приходится учитывать не только основные издержки на его проведение, но и необходимость осуществления процесса в жестких временных рамках, что накладывает особые требования на свойства биокатализаторов [330]. Необходимость интенсификации ферментативных процессов особенно актуальна для фармацевтической промышленности, поставленной в трудные условия из-за ограничений срока действия патентов. При обычной разработке стадий биосинтеза в конкретном биопроцессе исходят из свойств имеющихся ферментов, с помощью которых предполагается осуществлять требуемые химические реакции в промышленном масштабе. Свойства фермента определяют особенности дизайна биопроцесса в целом. Это определяется тем, что для оптимального функционирования конкретного фермента необходимо создавать строго контролируемые условия проведения реакции, а стоимость биокатализатора часто составляет основную часть издержек производства. [c.454]

    Разработка эффективных методов генерирования МГ приобретает особое значение в связи с проблемами компьютерного синтеза и молекулярного дизайна [19—25], автоматизации обработки данных спектральных исследований молекул, идентификации химических соединений ио набору спектральных данных, полученных методами ПК-, ЯМР-, ЯКР-спектросконии и масс-спектрометрии [26— 29]. Во всех этих направлениях возникает проблема описания изомеров с данной брутто-формулой или нахождения всех возмоншых продуктов реакций, удовлетворяющих определенным критериям отбора. Наиболее общие способы генерации химических структур ориентированы на современные ЭВМ, с помощью которых ио определенным алгоритмам можно находить структурные формулы всех возможных изомеров с заданной брутто-формулой. Эти методы основаны на онисаиип структуры молекулы в виде топологической матрицы. [c.22]

    В ходе биосинтеза стероидов ферменты способны эффективно функцио-нализировать основной углеводородный скелет при почти любом центре с региоспецифичным образованием разнообразных функциональных производных. Возможно ли воспроизвести такую гибкость и избирательность на чисто химических моделях Бартоновский синтез альдостерона основан на функционализации насыщенного центра, расположенного в тесной близости к реакционному центру. Цель, поставленная перед собой группой Брес-лоу, была еще более соблазнительной — разработать общий путь к управляемой отдаленной функционализации. Идея этого подхода, кажущаяся удивительно простой [37Г], была реализована на примере холестанола (242). К единственному имеющемуся в этом соединении спиртовому гидроксилу временно присоединяли группу, на конце которой находился реакционный центр, способный окислять неактивированные связи С—Н. Путем такого заякоривания межмолекулярная реакция становилась внутримолекулярной. Авторы этой работы заключили, что региоселективность окисления будет определяться длиной спейсера — фрагмента, соединяющего реакционный центр с кислородом холестанола. Дизайн подходящих систем базировался на тщательном анализе молекулярных моделей, позволившем определить оптимальную природу и размеры спейсера. Для удаления водорода из атакуемой С-Н-группы были использованы две реакции фотохимическое окисление с помощью бензофенона и гомолитическое галогенирование. На схеме 4.77 приведен пример первой из них. [c.491]


Смотреть страницы где упоминается термин Дизайн химических реакций: [c.491]    [c.491]    [c.486]    [c.274]    [c.491]    [c.495]    [c.495]   
Органический синтез. Наука и искусство (2001) -- [ c.491 ]

Органический синтез (2001) -- [ c.491 ]




ПОИСК







© 2024 chem21.info Реклама на сайте