Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классы углеводородов

    Скорость распространения пламени зависит от давления, при котором происходит процесс горения. При снижении давления ниже атмосферного скорость горения вначале несколько возрастает, а затем падает. Нормальная скорость распространения пламени зависит также от температуры горючей смеси, по которой распространяется пламя. На рис. 51 приведена зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана. Как видно, скорость распространения пламени увеличивается с повышением температуры по линейному закону. Этот характер зависимости сохраняется и для других классов углеводородов, при этом изменяется лишь угол наклона прямой относительно оси абсцисс. Большое влияние на нормальную скорость распространения пламени оказывает энергия активации молекул топлива чем меньше энергия активации, тем выше скорость нормального распространения пламени (табл. 15). [c.80]


    Энергия разрыва углерод —углеродной связи в молекулах всех классов углеводородов всегда ниже энергии С —Н —связи (примерно на 50 кДж/моль). [c.14]

    Данные, полученные в результате исследования фракции мирзаанской нефти по горизонтам о,содержании различных классов углеводородов, приведены в табл. 1. [c.144]

    Основные выводы по химизму газофазного термолиза различных классов углеводородов сводятся к следующему. [c.35]

    Объемная теплота сгорания зависит не только от соотношения углерод водород, но, как указывалось выше, и от плотности. Зависимость от класса углеводородов выражена более полно. Она изменяется от одного класса углеводородов к другому и различна для разных изомеров. Особенно высокую объемную теплоту сгорания имеют углеводороды с компактным расположением боковых цепей. [c.29]

    КЛАССЫ УГЛЕВОДОРОДОВ В НЕФТИ [c.24]

    Классификация, отражающая только химический состав не — ([зти, предложена сотрудниками Грозненского нефтяного научно-исследовательского института (ГрозНИИ). В основу этой классифи— кации принято преимущественное содержание в нефти одного или несколько из классов углеводородов. Различают 6 типов нефтей парафиновые, парафино-нафтеновые, нафтеновые, парафино —на — ([этено —ароматические, нафтено-ароматические и ароматические. [c.88]

    ДС аренов, в отличие ог других классов углеводородов,не понижается, а наоборот, несколько повышается с увеличением числа углеродных атомов. Их ДС улучшается при уменьшении степени разветвленности и симметричности ее расположения, а также наличии двойных связей в алкильных группах. [c.106]

    С добавлением этиловой жидкости октановые числа бензинов увеличиваются. Восприимчивость бензина к этиловой жидкости, называемая часто приемистостью к ТЭС, зависит от состава бензина — структуры и класса углеводородов — и содержания серы. Восприимчивость бензинов к этиловой жидкости резко снижается при большом содержании в бензине серы, в несколько меньшей мере при увеличенном содержании ароматических углеводородов. [c.66]

    Проблема разделения нефтяных газов, бензинов и в некоторой степени легких газойлей на индивидуальные углеводороды вполне разрешима. Большой прогресс в этом направлении был достигнут в течение последних 20 лет, особенно благодаря систематическим исследованиям, проведенным Национальным бюро стандартов 29 (а) (Проект 6 Американского нефтяного института). Для высококипящих фракций, включая смазочные масла, состоящих из большого числа различных комплексных и совершенно неизвестных углеводородов и других компонентов, эта проблема представляется почти безнадежной. В настоящее время определение и разделение различных классов углеводородов позволяют только приблизиться к познанию химической структуры высокомолекулярных углеводородов, присутствующих в нефти. [c.11]


    Согласно представлениям, принятым в химии нефти, ненасыщенные углеводороды обладают одной или большим числом активных двойных связей в молекуле. В противоположность ароматическим углеводородам двойная связь в ненасыщенных углеводородах обнаруживает способность ко многим реакциям присоединения, например таким, как присоединение галоидов и серной кислоты. Ненасыщенные углеводороды всегда отсутствуют в продуктах прямой гонки, но представляют собой важный класс углеводородов в крекинг-бензинах. Присутствие двойной активной связи легко обнаружить в углеводородах низкого и среднего молекулярного веса, включая газойли. Свойства высокомолекулярных ненасыщенных соединений почти неизвестны, поэтому любые выводы о составе ненасыщенных высококипящих фракций следует считать недостоверными. [c.12]

    Различие между указанными выше классами углеводородов особенно резко для углеводородов низкого и среднего молекулярного веса, присутствие в которых ароматического кольца или двойной связи придает им характерные свойства этих структур. Однако классификация становится сомнительной для высокомолекулярных углеводородов, которые могут содержать ароматические, нафтеновые, олефиновые или парафиновые структуры без обнаружения свойств, характерных для преобладающей структуры. Высокомолекулярные углеводороды смазочных масел с ароматическими и нафтеновыми кольцами и длинными парафиновыми боковыми цепями могут обладать ароматическими, нафтеновыми и парафиновыми свойствами в зависимости от преобладания соответствующих структур. Кольцевой анализ, развитый Уотерманом и его школой, преодолевшими эти трудности, позволяет определять среднее содержание парафиновых боковых цепей, ароматических и нафтеновых колец. В этой главе рассматриваются лишь индивидуальные углеводороды и классы углеводородов, присутствующих в нефти. [c.12]

    Определение и разделение углеводородов и классов углеводородов основаны на применении физических и химических методов. Физические методы являются наиболее важными и, могут быть классифицированы следующим образом  [c.12]

    В табл. 20 приведены сред- 1 ние значения интерцептов ре-фракции для различных классов углеводородов в интервале выкипания бензинов. На рис. 3 приведены соответствующие прямые для моноциклических ароматических углеводородов, а также для моно- и бициклических нафтенов. [c.256]

    Как уже было указано выше, разделение нефти на индивидуальные углеводороды и другие соединения возможно лишь для низкокипящих фракций от бензинов до легких газойлей. Вследствие огромного числа составных частей более тяжелые фракции не могут быть разделены на индивидуальные компоненты существующими аналитическими методами. Поэтому разделение и определение классов углеводородов нефти так же важны, как и разделение и идентификация индивидуальных углеводородов, в особенности для высокомолекулярных нефтяных фракций. [c.24]

    Следует отметить, что процесс, проводимый при помощи мочевины, недостаточно селективен для разделения индивидуальных соединений и даже некоторых фракций (содержащих только один определенный класс углеводородов). Однако посредством многократных экстракционных кристаллизаций можно отделить фракции с большим содержанием нормальных парафинов (и низкими [c.79]

    В табл. 7 приведены данные по составу классов углеводородов в типичных бензинах прямой гонки. Как видно из этой таблицы, все прямогонные [c.24]

    НИЯ 40—102°), изученных Россини ы его сотрудниками. В общем в легких керосинах не наблюдается преобладания парафиновых углеводородов с прямой цепью, изопарафиновых углеводородов, циклопентанов и цикло-гексанов. Однако керосин из мичиганской нефти содержит преимущественно парафиновые углеводороды с прямой цепью, а керосин из нефти месторождения Винклер очень богат изопарафиновыми углеводородами. Следует иметь в виду, что такое распределение четырех классов углеводородов было установлено для узких керосиновых фракций. Это не означает, что в более тян<елых бензиновых и газойлевых фракциях преобладают эти же типы углеводородов. [c.26]

    До последних 15 лет общее определение и разделение классов углеводородов в высококипящих фракциях и нефтяных продуктах тормозились трудностями разделения парафиновых и циклопарафиновых углеводородов. [c.27]

    Непредельные углеводороды, т. е. углеводороды, имеющие одну или более олефиновых связей в молекуле. Обычно непредельные углеводороды отсутствуют в прямогонных продуктах, но они составляют важный класс углеводородов в продуктах крекинга. Олефиновые связи могут встречаться в каждом из упомянутых выше характерных классов. [c.364]

    Если углеводород содержит структурные группы разных типов, он может быть отнесен к нескольким классам. В соответствии с принятым выше определением в таком случае общее содержание ароматические олефиновые 4- нафтеновые - - парафиновые в нефтяной фракции может быть значительно выше 100%. Чтобы избежать этого осложнения, другие классы углеводородов могут быть определены как нафтено-ароматические и т. п. Вследствие быстро растущего числа и сложности компонентов во фракциях с более высокой температурой кипения та часть сырой нефти, которая может быть в общем определена как масляная часть, практически мало подходит для такого типа анализа. [c.367]


    Прежде чем перейти к рассмотрению некоторых важных вторичных (не связанных с расщеплением) реакций каталитического крекинга, следует остановиться на расщеплении основных классов углеводородов до газообразных продуктов (табл. 7) [14]. Выходы угловодородов от С до [c.131]

    А — регенерировано этилена 13,7 %, бутилена 0,7%, изобутана 11,6 % и жидкого полимера 73,7% В — регенерировано этилена 18,0%, бутилена 0,8%, изобутана 6,4 % и жидкого полимера 74,5%. Жидкий полимер содержат парафины, циклопарафины, олефины и ароматические углеводороды. Присутствие этих различных классов углеводородов указывает на то, что шла смешанная полимеризация. [c.196]

    Представляется возможным, что подобная ситуация справедлива и для высококипящих бензиновых фракций присутствуют все возможные изомеры всех возможных классов углеводородов, большинство из них в незначительном количестве или в виде следов. [c.15]

    В табл. 1-6 [64] дается примерное количество каждого из семи классов углеводородов для двух фракций — керосина и легкого газойля нефти Понка. [c.22]

    Если температурный коэффициент плотности вычертить перпендикулярно плотности, то получаются характерные прямые линии для различных классов углеводородов. Если на парафиновую цепь действует нафтеновое кольцо, то свойства конечного соединения меняются пропорционально в нафтеновом направлении. В пределе молекула будет обладать плотностью парафина неопределенного молекулярного веса, 0,861 [389]. [c.211]

    У1-6. Реакции классов углеводородов [c.326]

    Вызывающие неполадки отложения могут нагреться до необходимой температуры за счет теплоты окисления собственных углеродсодержащих веществ. Преждевременное воспламенение, как было установлено, происходит значительно чаще под влиянием отложений, полученных из топлив, содержащих ТЭС, чем из неэтилированных топлив [206, 207]. Окиси и соли свинца и других металлов понижают температуру воспламенения углерода и стимулируют его сгорание. Таким образом, те условия, которые необходимы для сгорания отложений (увеличенное время при высоких температурах), будут способствовать преждевременному воспламенению. К числу известных факторов такого рода относятся бедность смеси воздух топливо (вследствие чего смесь представляет собой богатый источник кислорода), повышенные температуры воздуха и повышенное давление (наддув), поздняя установка зажигания, повышенная степень сжатия, тип топлива (с увеличением испаряемости снижается образование отложений), источник получения топлива. Так, например, при снижении конца кипения топлива тенденция к преждевременному воспламенению снижается вообще же эта тенденция для различных классов углеводородов уменьшается в такой последовательности ароматические, олефины, парафиновые углеводороды [203, 208]. [c.415]

    Химические методы могут быть использованы или для разделения некоторых классов углеводородов, или для идентификации индивидуальных углеводородов в узких фракциях. Ароматршеские углеводороды могут быть количественно отделены от насыщенных углеводородов сульфированием олефины могут быть количественно и селективно гидрированы при низких температурах в присутствии эффективных катализаторов циклогексаны (исключая четвертичные производные) дегидрируются в ароматические углеводороды над платиновым катализатором и т. д. [c.13]

    Классы углеводородов Кобальтовый катализатор, % об. Железный катализатор, % вес.  [c.594]

    Проведенные исследования по изучению энергетических характеристик нефтяных топлив, отдельных классов углеводородов и раз личных фракций позволили установить, что при наиболее благопри ятных условиях можно будет получить топливо, энергетические характеристики которого будут выше лучших сортов керосина не более чем на 5—7%. Наиболее перспективными в этом отношении являются парафино-нафтеповые углеводороды, выкипающие при температуре 300—350° С и выше. Таким образом, этот путь полу чения высокоэффективных топлив не решает полностью проблемы. [c.91]

    Углеводородный состав оказывает влияние на эксплуатационные свойства реактивных топлив. Некоторые классы углеводородов ухуд1р1ают качество топлив, вследствие чего содержание их [c.13]

    В последние 10ды у нас и за рубежом проводились комплексные исследования более детального химизма нефтеобразования в условиях, максимально моделирующих природный нефтесинтез (за исключением продолжительности опытов по причине отсутствия у исследователей времени продолжительностью в миллион лет). В результате установлены общие закономерности образования основных классов углеводородов нефти из отдельных групповых компонентов растений и животных организмов, а также продуктов их первичных превращений (химический аргумент). [c.54]

    Наиболее важный показатель качества нефти, определяющий Е1ыбор метода переработки, ассортимент и эксплуатационные свой — ства получаемых нефтепродуктов, — химический состав и его распределение по фракциям. В исходных (нативных) нефтях содер — жатся в различных соотношениях все классы углеводородов, кроме непредельных (алкенов) соединений парафиновые (алканы), на-сртеновые (циклоалканы), ароматические (арены) и гибридные -карафино-нафтено-ароматические. [c.60]

    Как и другие характеристики, вязкость нефти и нефтяных фр.1кций зависит от их химического состава и определяется силами межмолекулярного взаимодействия. Чем выше температура кипе — НИ5 нефтяной фракции, тем больше ее вязкость. Наивысшей вязкостью обладают остатки от перегонки нефти и смолисто — асфаль — теиовые вещества. Среди классов углеводородов наименьшую вязкость имеют парафиновые, наибольшую — нафтеновые, а ароматические углеводороды занимают промежуточное положение. Возрастание числа циклов в молекулах циклатюв и аренов, а также удлинение их боковых цепей приводят к повышению вязкости. [c.83]

    При взаимодействии с кислотами углеводороды ведз/т себя как слабые основания. Из всех классов углеводородов наибольшей основностью обладают алкены, при этом основность изоалкенов выше. Полициклические арены являются значительно более силь — [c.91]

    Методы 1—4 действительно позволяют производить разделение углеводородов и классов углеводородов по их свойствам температуре киПения, температуре плавления, адсорбции или растворимости. Методы же 5—7 не могут быть использованы для разделения углеводородов. Они позволяют определять физические свойства, упоз1Янутые выше в методе 5, или же спектры углеводородов. [c.13]

    Частоты, характеризующие тип замещения в бензольном кольце, обсуждались выше. Они возникают и результате колебаний незамещенных вседородных атомов в кольце. Поэтому можно было бы ожидать развития количественных методов, которые позволяли бы характеризовать алкилбензолы ]j соответствии с положением замещения. В литературе пока еще отсутствуют подобные работы, но несодшенно, что эта задача, а также многие другие применения колебательных спектров для других классов углеводородов станут предметом да.льнейшого изучения. [c.333]

    Тсношиые данные о составе тяжелых фракций. Принято считать и экспериментально установлено, что число компонентов нефтяной фракции тем бэльше, чем выше ее температура кипения. Кроме того, как показано ниже, различия между основными классами углеводородов с повышением температуры кипения выражаются все менее резко. Поэтому тяжелые фракции обладают чрезвычайно сложным состав эм, изучение которого с целью идентификации индивидуальных компонентов является довольно безнадежным делом, имеющим малую практическую ценность. Попытки выделить индивидуальные углеводороды из фракций смазочных масел до сих пор были безуспешными, если не считать к-парафинов и немногих высококонденсированных полиароматических углеводородов число компонентов настолько велико, что для их изучения необходима очень тщательная и весьма трудоемкая работа. [c.363]

    Табл. 5 содержит наиболео доетовернг.1е данные ио процентному содержанию основных классов углеводородов в синтетических бензинах. Понятно, что состав бензинов может отклонятьс5 от приведенных в таблице данных в зависимости от природы сырья и условий процесса. Состав каталитических крекинг-бензинов, в частности, зависит от изменений температуры, времени контакта и активности катализатора. [c.56]

    Теория термического крекинга с участием свободных радикалов быда выдвинута Райсом и сотрудниками [26, 31, 32, 33]. Ее применимость к высшим парафинам была подтверждена Воджем и Гудом [40], а распространение ее на другие классы углеводородов обсуждалось Гринсфельдером, Воджем и Гудом [19]. Литература но этому вопросу в настоящее время содержит очевидные доказательства свободнорадикального механизма для многих органических реакций. По-видимому, теория Райса-Косякова хотя и требует некоторого улучшения в деталях, является все же наиболее удовлетворительным объяснением термического крекинга углеводородов. [c.117]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Гидрогенизация на никелевом катали.заторе при повышенных температуре и давлении. Относительную активность различных классов углеводородов к реакции каталитической гидрогенизации можно представить следующим образом олефины с открытой цепью > д иклоолефины > [c.247]

    Таким образом, проведенные глубокие исследования жидких продуктов окислительной каталигической конверсии тяжелого нефтяного сырья, позволили не только установить их подробный состав и строение основных классов углеводородов, по U подтвердить то, что наблюдаемые закоиомсрнос-тп нх образования обусловлены протеканием окислительно-восстановительных реакций. Показано наличие в продуктах каталитического крекинга классов соединений, аналогичных продуктам окислительной каталитической конверсии, которое подтверждает высказанное нами ранее предположение [c.55]

    Получил распространение метод распределительной хроматографии, в котором применяются некоторые фторорганические соединения в качестве жидкой фазы. Этот метод можно с успехом применять для отделения алканов (и особенно изоалканов) от цикланов [39]. Эти же классы углеводородов можно разделить, используя метод распределительной хроматографии с вытеснением жидкостью [40]. [c.13]

    Второй метод основан на разделении масляной фракции на со-ч тавляющие классы углеводородов настолько полно, насколько это возможно. Для этого используются в надлежащей последовательности все имеющиеся физические методы перегонка под вакуумом, адсорбция, карбамидная очистка, экстракция растворителями, термическая диффузия. [c.26]

    На количество образующегося кокса влияет не только химический состав основной массы сырья, но также присутствие небольших количеств асфальтовых соединений. Количество таких соединений может измеряться числом осмоления — количеством вещества, удаляемым серной кислотой [97], или коксовым числом (ASTM D 189-52). Последнее определение можно сделать более чувствительным, если находить коксовое число для 10 %-ной наиболее высококипящей фракции вещества. Если значение коксового числа превышает 0,12%, значит, нри крекинге будет образовываться избыточное количество кокса. В зависимости от характера сырья изменяют режим процесса, причем стараются добиться достаточно высокого выхода бензина при минимальном отложении кокса в аппаратуре. Выбор режима процесса следует связывать также с изменениями в стабильности фракций, которая зависит от соотношения между различными классами углеводородов и от соотношения между гомологами внутри определенного класса. Следует учесть, что, конечно, необходимые изменения в технологии зачастую незначительны. [c.309]


Смотреть страницы где упоминается термин Классы углеводородов: [c.138]    [c.80]    [c.35]    [c.47]   
Смотреть главы в:

Изотопный обмен и замещение водорода в органических соединениях -> Классы углеводородов




ПОИСК





Смотрите так же термины и статьи:

Бифункциональные производные углеводородов. Специфические классы органических соединений

Вязкостная характеристика углеводородов различных классов при низких температурах

Действие высоких температур на углеводороды разли. ных классов

Дисперсия относительная и определение класса углеводорода

Идентификация пиков углеводородов в газовой хроматографии с помощью последовательного привлечения реакций на класс вещества

Каталитический крекинг углеводородов различных классов

Моноциклические углеводороды класса

Начало изучения нефти В. В. Марковпиковым и открытие им класса эпициклических углеводородов

Образование основных классов углеводородов нефти

Окисление углеводородов различных классов и типов структуры

Определение принадлежности углеводорода к определенному классу путем измерения относительной дисперсии

Основные закономерности процесса каталитического крекинга и общие Практическое использование результатов исследования каталитического крекинга углеводородов различных классов для подбора промышленного сырья

Полициклические углеводороды класса

Реакции других классов углеводородов в условиях каталитической ароматизации парафиновых углеводородов

Реакции каталитического крекинга углеводородов различных классов

Связь различных классов органических соединений с классом углеводородов

Стереохимия каталитического гидрирования некоторых классов циклических углеводородов

Углеводороды других классов. Таблицы для состояния идеального газа

Фазовые переходы в наполненных смесях твердых углеводородов различных классов

Фармакологические свойства и медицинское применение известных производных адамантана и других каркасных соединений Адамантан - представитель класса предельных каркасных углеводородов



© 2025 chem21.info Реклама на сайте