Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зона реакции

    Основное требование к реакторным устройствам заключается в обеспечении времени пребывания реагирующих веществ в зоне реакции и режима температур и давлений, необходимых для получения заданного выхода и качества целевых продуктов. [c.262]

    Для многих реакций оказалось более удобным пользоваться не временем пребывания продукта в зоне реакции, которое во многих случаях невозможно точно определить, а производительностью единицы реакционного объема. Производительностью единицы реакционного объема называют количество сырья, выран<епное в массовых или объемных единицах, которое может быть пропущено через единицу реакционного объема в час при условии достижения заданной глубины превращения. Производительность единицы реакционного объема принято называть объемной или массовой (весовой) скоростью. [c.265]


    Объем зоны реакции может быть вычислен по уравненню [c.266]

    Математическое выражение для онределения температуры, эквивалентной средней скорости неизотермических процессов, выведено в предположении, что изменение температуры процесса является прямолинейным. При небольших перепадах температур такое допущение не дает заметных погрешностей. В случае же больших перепадов температур зону реакции разбивают на ряд участков, на каждом из которых принимают прямолинейное изменение температуры. [c.270]

    Параллельное секционирование основано на ограничении внутренней циркуляции нри больших отношениях высоты аппарата к его диаметру. Это, в частности, достигается разделением зоны реакции на ряд вертикальных секций. [c.275]

    Как следует из этих уравнений, первичные продукты пиролиза должны возможно быстрее выводиться из зоны реакции, чтобы избежать вторичных реакций. [c.51]

    Время превращения ограничивается 1,0—1,5 сек. При увеличении времени пребывания смеси в зоне реакции содержание кислородсодержащих продуктов пе увеличивается. Преобладающим процессом становится образование углекислоты. [c.151]

    Удлинение времени пребывания продуктов в зоне реакции усиливается реакцией окисления с образованием альдегидов, кетонов и кислот. [c.295]

    При окислении пропана в первую очередь реагирует вторичный атом водорода. В этом случае оптимальное соотношение равно 2 объемным частям пропана, 2 объемным частям кислорода и 1 объемной части бромистого водорода время пребывания в зоне реакции составляет около 3 мин. [c.440]

    При работе по этому методу тоже существует группа углеводородов, например циклогексан, метилциклогексан н пентан, для сульфоокисления которых перекисные соединения необходимо добавлять лишь па первых стадиях реакции. В случае других углеводородов (газообразные парафиновые углеводороды или когазин II), чтобы процесс не останавливался, надо непрерывно вводить в зону реакции небольшие количества перкислот. [c.493]

    Лучше всего вести реакцию при 50° в присутствии экстрагирующего вещества, например разбавленной уксусной кислоты, которая сразу же растворяет образующиеся сульфоновые кислоты. Для инициирования реакции, которое при сульфоокислении происходит значительно труднее, чем при сульфохлорировании, прибавляют около 1 % перекиси. При работе с углеводородами, для которых требуется в течение всего процесса непрерывная подача катализатора в зону реакции, перекисное соединение вводят в виде раствора, лучше всего в том же самом углеводороде. [c.495]


    Подвод реагирующих компонентов в зону реакции совершается путем молекулярной диффузии или конвекции. При интенсивном перемешивании комионентов конвективный перенос называют турбулентной диффузией. В многофазных процессах подвод реагентов в зону реакции связан с переходом вещества из одной фазы в другую, например при плавлении твердых веществ или растворении их в жидкости. Такие процессы, в которых совершается переход вещества пз одной фазы в другую через поверхность раздела фаз, называются массопере-дачей. / [c.89]

    Венер и Вильгельм нашли, что решение в зоне реакции [c.293]

    При тепловых эффектах реакций выше 12о кДж/кг, с учетом теплопотерь во внешнюю среду, градиент температур в реакторе (разность температур между входом и выходом из реактора) может достигать 40 —50 °С, что способствует усилению нежелательных вторичных реакций расщепления углеводородов и сокращению диапазона варьируемых температур по мере отработки катализатора. В этом случае экзотермический характер превращений требует отвода теплоты из зоны реакции, поэтому выбирают секционную конструкцию реактора. [c.80]

Рис. 13. Графическое изображение перехода от быстрой реакции к. мгновенной (конечная толщина зоны реакции). Рис. 13. <a href="/info/10312">Графическое изображение</a> перехода от <a href="/info/9911">быстрой реакции</a> к. мгновенной (<a href="/info/3784">конечная толщина</a> зоны реакции).
    С повышением давления в зоне реакции процесс окисления интенсифицируется и качество окисленных битумов улучшается благодаря конденсации части масляных паров. В частности, повышается пенетрация битума при одинаковой температуре его размягчения. Обычно давление колеблется от 0,3 до 0,8 МПа. [c.75]

    Температура в зоне реакции Давление [c.152]

    Осповно задачей расчета проточного реактора является опреде-леппе потребного реакционного объема. В основу расчета может быть взято время реагирования или пребывания реагирующих ве-д еств в зоне реакции т в тех случаях, когда оно поддается определению, [c.265]

    Во многих случаях скорости гетерогоргных хилгнческих реакций на пористых катализаторах определяются ие кинетикой химического превращения, а скоростью иеремещения молекул реагирующих веществ из объема к поверхности гранулы катализатора и через поры катализатора к зоне реакции. В зависимости от того, какая стадия является наиболее медленной и, следовательно, определяющей, различают три основных режима. [c.272]

    Другую промышленную устаио вку по окислению газообразных углеводородов построила фирма Силениз кемикал корпорейшн в г. Бишоп (штат Тексас). Процесс ведут при 60 ат, окисляя в присутствии водяного пара чистые пропан или бутан воздухом, взятым в недостатке, по методу, описанному в одном из американских патентов [10]. При этом используют большие избытки углеводорода и разбавителя (водяного пара) и малые продолжительности пребывания газов в зоне реакции. Если смесь из 1 весовой части бутана, 5 весовых частей воздуха и 34 весовых частей водяного пара пропускать при 20—30 ат через реак- [c.436]

    В тех случаях, когда скорости гетерогенных химических реакций, проводимых на твердых катализаторах, лимитируются диффузией реагируюищх веществ к зоне реакции, часто оказывается целесообразным применять тонко измельченные катализаторы для ускорения внутренней диффузии и создавать интенсивное перемешивание в зоне реакции с целью увеличения скорости внешней диффузии. Для систем жидкость — жидкость скорость реакции может лимитироваться диффузией молекул из объема к поверхности раздела фаз и через пограничный слой. Для интенсификации процесса в системах жидкость — жидкость увеличивают поверхность фазового контакта реагирующих веществ путем увеличения их степени дисперсности и интенсивного перемешивания. [c.273]

    Вместо перуксусной кислоты можно пользоваться пербензойной кислотой в этом случае на 500 мл циклогексана прибавляют 80 мл 0,04 молярного раствора перкислоты в циклогексане. Через несколько минут реакционная смесь темнеет и быстро становится интенсивно черной. После этого начинается выделение масла, которое оседает вместе с темными продуктами реакции. Реакция продолжается непрерывно без всякого добавления новых количеств перкислоты, как эго всегда наблюдается, если исходят из циклогексана. По мере уменьшения объема реакционной массы ее пополняют свежим циклогексаном, свободным от ароматических соединений. При сульфоокислении мепазина перкислоту нриходится прибавлять непрерывно в течение всего процесса. Непрерывную подачу перекисных соединений можно осуществить также при помощи газов, для чего кислород перед вводом в реактор пропускают через трехмолярный раствор перуксусной кислоты в уксусной. Этим самым в зону реакции постоянно вносится очень малое количество перуксусной кислоты, достаточное для развития цепной реакции. [c.494]


    Вследствие интенсивной внутренней циркуляции время пребывания отдельных частиц в реакторе неодинаково, в результате чего часть продуктов реакции задерживается в зоне реакции очень долго, а часть сырья уходит из зоны реакции, не успев прореагировать. Так, время пребывания частиц в аппарате с полным внутренним перемепгиванием составляет 0,632 от времени пребывания этих частиц в аппарате идеального вытеснения. [c.274]

    Рассматривая методы дегидрирования бутана, автор указывает, что основной трудностью процесса является необходимость быстрого подвода большого количества тепла в зону реакции. Однако он не упол1инает о широко распространенном методе дегидрирования в кипящем слое катализатора, ири котором эта проблема решается наиболее удачно. [c.6]

    Смеси, принадлежащие к тому или иному классу, типу и подтипу, характеризуются специфическим поведением компонентов при осуществлении фазовых процессов, например, таких, как дистилляция и ректификация [29, 44, 45]. Так, в процессе непрерывной ректификации для смесей определенного класса, типа и подтипа характерны как специфическое поведение отдельных компонентов по высоте ректификационного аппарата, так и вполне определенная последовательность выделения фракций предельно возможного состава при переходе от одной колонны к другой в технологической схеме ректификации. В реакционно-ректификационных процессах, где скорость химической реакции конечна, зона реакции, как правило, сосредоточена в какой-то части аппарата, а в остальных частях идет обычная ректификация. Полный термодинамико-топологический анализ всей диаграммы в целом дает возможность не только разместить зону реакции в наиболее благоприятных условиях относительно концентраций реагентов, но и выявить определенные ограничения по составу конечных продуктов ректификации. Эти ограничения обусловлены тем, что в случае наличия азеотропов в рассматриваемой смеси, соответствующий этой смеси симплекс составов распадается на ряд ячеек, названных областями непрерывной ректификации [29], причем каждая ячейка характеризуется предельно возможными составами конечных фракций, которые можно получить в одном ректификационном аппарате непрерывного действия. Возможные конфигурации областей непрерывной ректификации и их границ рассмотрены в работах 29, 46]. [c.194]

    Выход продуктов окисления растет с увеличеЕием времени пребывания углеводородов в зоне реакции. [c.296]

    Отвод полученных продуктов из зоны реакции может производиться так же, как и подвод реагирующ1г компонентов, т. е. диффузией или конвекцией. [c.89]

Рис. 9.4. Зависимость степени конверсии Н 5 в серу от температуры при различном давлении паров в системе 1— 0,05 МПа 2— О, I МПа 3— 0,2 МПа 4— 0,1 МПа (из газа удалена вся сера) 1— зона свободнопламенного горения II— зона реакции на катализаторе Рис. 9.4. <a href="/info/1088808">Зависимость степени конверсии</a> Н 5 в серу от температуры при <a href="/info/1507612">различном давлении паров</a> в системе 1— 0,05 МПа 2— О, I МПа 3— 0,2 МПа 4— 0,1 МПа (из газа удалена вся сера) 1— зона свободнопламенного горения II— <a href="/info/25837">зона реакции</a> на катализаторе
    В высокотемпературной зоне с повышением давления степень пре — вр.ащения в серу снижается. В каталитической зоне повышение давления, наоборот, ведет к увеличению степени конверсии, так как давление сносе бствует конденсации элементной серы и более полному выводу и зоны реакции. На практике увеличение степени конверсии Н З дс стигается применением двух или более реакторов — конверте— рев с удалением серы конденсацией и последующим подогревом газа между ступенями. При переходе от одного реактора к другому по потоку газа температуру процесса снижают. [c.166]

    Тепловой эффект гидрокрекинга определяется соотношением реакций гидрирования и расщепления. Обычно отрицательный теп — Л01ЮЙ эффект расщепления перекрывается положительным тепло — вым эффектом гидрирования. Естественно, экзотермический теп — лоиой эффект суммарного процесса тем больше, чем выше глубина ги/ рокрекинга (табл. 10.17). Поэтому при его аппаратурном оформлении обычно предусматривается возможность отвода избыточного те1Ела из зоны реакции, чтобы не допустить перегрева реакционной [c.229]

    На Шебелииском ГПЗ (см. рис. 67) реализован процесс крекинга в присутствии природного газа, состоящего в основном нз метана, под давлением 3 МПа, названный метакрекингом (метаформингом). Фракция прямогонного бензина после предварительного подогрева смешивается с подогретым природным газом в количестве 150—200 м /т. Смесь поступает в печь И, нагревается до 500—550 °С и находится ири этой температуре в течение времени, необходимого для протекания процесса на заданную глубину. При выходе из зоны реакции (печь И) в газопродуктовый поток из сепаратора 14 подается крекинг-беп-зин для снижения темиературы потока, прекращения реакции и предотвращения образования смолистых отложений. [c.217]

    Смешанный поток поступает в сепаратор 12 для очистки от коксовой пыли, образующейся в процессе деструктивной переработки сырья в зоне реакции. Отсепарированный поток поступает в систему теплообменников-холодильников 13, а затем в сепаратор 14. Часть жидкого потока возвраш,ается в продуктовый поток, большая же часть направляется в колонну 19. Крекинг-газы подаются на газоразделение в колонны 17 и 18. Природный газ подавляет реакцию коксообразования и повышает турбулизацию потока, что способствует снижению коксообразования в процессе термического крекинга. Метакрекинг позволил повысить октановое число прямогонного бензина с 68—64 до 72—76. [c.217]


Смотреть страницы где упоминается термин Зона реакции: [c.274]    [c.276]    [c.278]    [c.215]    [c.281]    [c.521]    [c.237]    [c.318]    [c.89]    [c.89]    [c.283]    [c.283]    [c.284]    [c.293]    [c.79]    [c.127]    [c.150]    [c.42]   
Смотреть главы в:

Ацетилен, его свойства, получение и применение -> Зона реакции


Справочник инженера-химика Том 1 (1937) -- [ c.567 ]




ПОИСК







© 2025 chem21.info Реклама на сайте