Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость химических превращений

    В примерах приведен анализ процессов при сопоставимых скоростях химического превращения и массопереноса или при более медленной химической реакции по сравнению с массопередачей. [c.207]

    Скорость химических превращений зависит от п р и рГо д ы реагирующих веществ, их конце н-т р а ц и й и в н е ш н И Х условий. [c.193]

    Второй причиной, приводящей к отклонению идеальных моделей от реальных, является уменьшение скорости химических превращений вследствие локального массо- и тепло-переноса. Чтобы учесть это, необходимо вместо уравнений формальной кинетики, отражающих законы собственно химических превращений, применять уравнения макрокинетики [34,36, 37], учитывающие влияние локального массо-и теплопереноса. [c.39]


    Исходя из работ К- И. Климова [262], основной характеристикой масла, определяющей его способность предотвращать заедание трущихся -поверхностей, является скорость его разложения в зоне трения, т. е. скорость химических превращений масла в конечные продукты, которые уже не в состоянии выполнять функции жидкой смазки. При этом зависимость скорости разложения масла и в зоне трения от температуры описывается уравнением [c.245]

    СКОРОСТЬ ХИМИЧЕСКИХ ПРЕВРАЩЕНИЙ [c.204]

    Скорость химического превращения — феноменологическое свойство реакционной системы в определенных условиях проведения процесса. Она зависит от состава, давления, температуры и свойств катализатора (если он присутствует) в системе, а также, применяя общую формулировку, от условий течения или перемешивания, оказывающих влияние на массо- и теплоперенос. [c.242]

    Предположим, что скорость химического превращения описывается зависимостью [c.306]

    Скорость химических превращений, проводимых в присутствии твердого катализатора, часто относят к единице его массы. В этом случае скорость превращения, отнесенная к единице объема реактора, рассчитывается по формуле  [c.318]

    Скорость химического превращения определяется скоростью транспорта вещества и теплоты к зоне реакции и скоростью реакции. Химические реакции могут протекать в объеме реакционной среды (гомогенные реакции) либо на поверхности раздела фаз (гетерогенные реакции). [c.259]

    При диффузионном режиме реакции, когда Ржа С К хУп и концентрация вещества в объеме жидкости Хв = О, скорость химического превращения [c.268]

    Если реакции протекают вблизи равновесия, уравнение скорости химического превращения можно упростить разложением экспоненты в ряд и получить выражение для собственного коэффициента Ьгг и скорости реакции при Аг< ЯТ  [c.255]

    Скорость химического превращения на одном зерне Перенос тепла Перенос вещества  [c.220]

    Скорость химического превращения [c.220]

    Структурная схема, входные и выходные параметры, а также внешние связи второго элемента (проточные зоны) приведены на рис. 5.4. Ко входным параметрам следует также отнести и вектор наблюдаемой скорости химических превращений Wg l в элементе слоя. Нестационарные процессы в проточной зоне определяются шестью факторами 1) линейной скоростью реакционной смеси  [c.223]

    Точка в координатной плоскости х. у соответствует определенному состоянию точечной системы совокупность точек на этой плоскости принято называть фазовой траекторией, характеризующей процесс изменения состояния точечной кинетической системы. Следует отметить, что при определенных значениях параметра распределенная мембранная система сводится к точечной — обычно это соответствует условию, когда скорости диффузии значительны по сравнению со скоростью химических превращений (О/Р оо). [c.31]


    Перед постановкой исследований химической кинетики реакций, очевидно, нужно убедиться, что исследуется именно скорость химического превращения, а не некоего суммарного процесса, тормозимого диффузией, или даже просто скорость массопереноса. Иными словами, ставится задача установить, что в изучаемых условиях процесс протекает в кинетической области. [c.73]

    Квантовые выходы, естественно, определяются соотнощениями (3.21). Интересно, что и при радикальном механизме при фотохимическом равновесии (Шд=Шт=0) по концентрациям продуктов можно определить константы- скоростей элементарных реакций, используя соотношения (3.22), где 71=йкц/йкт и у2= рц/ рт- Особенностью радикального механизма является ощутимое влияние температуры на скорость химических превращений, так как энергии активации для всех элементарных реакций в этом случае значительны. [c.77]

    Скорость процесса в целом определяется скоростью наиболее медленной стадии, поэтому транспорт может определять скорость химического превращения. Впервые это было отмечено Нернстом при изучении окисления аммиака на платине. [c.267]

    Для каждого процесса может быть подобрана некоторая оптимальная пористая структура зерен катализатора, определяемая соотношением скоростей химических превращений и диффузий веществ, участвующих в данном процессе. Для реакций с участием веществ малого молекулярного веса, ведущих в условиях реакции к стабильным целевым продуктам, целесообразно применять катализаторы с большой удельной поверхностью и, следовательно, с сильно развитой системой пор малого диаметра. Повышение молекулярного веса реагентов или продуктов реакции приводит к понижению скорости их диффузии, вследствие чего для проведения быстрых реакций требуются более широкопористые катализаторы, поверхность которых обычно невелика. [c.175]

    Вследствие относительно большого размера частиц катализатора, значительное влияние на скорость химических превращений в зернистом слое оказывают процессы переноса вещества и тепла внутри твердых частиц. Процессы на изолированном зерне катализатора изучались в главе III знание макроскопической скорости реакции на отдельном зерне в зависимости от концентраций реагентов и температуры потока в данной точке слоя — необходимый элемент математического описания процессов в зернистом слое. Другим [c.213]

    При моделировании химических процессов размеры печи не сказываются на скорости химического превращения, если процесс определяется только скоростью химической реакции. Однако химическая реакция приводит к изменению состава реагируемой смеси и температуры. Следствием этого является возникновение процессов переноса вещества и теплоты, на скорость которых существенно влияет характер концентрационного и температурного полей в печи, В свою очередь состав смеси и температура существенно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в полной зависимости от размеров печи, так как с изменением масштаба меняется структура или соотношение между его составными частями, химическими стадиями и стадиями процессов переноса вещества и теплоты. В связи с вышеизложенным невозможно сохранить одинаковое влияние физических факторов на скорость химического превращения в печах разного масштаба, кроме тех случаев, когда химическая реакция протекает с большей скоростью, чем процессы переноса. [c.130]

    Основные показатели эффективности функционирования элементов ХТС выражают в виде коэффициентов полезного действия (к. п. д.) элементов или величин, характеризующих фактический выход химического продукта из элемента ХТС, которые для технологических процессов собственно химического превращения представляют собой степени превращения химических компонентов, а для технологических процессов межфаз-ной массопередачи — степени межфазного перехода (степени разделения) или коэффициенты извлечения. К. п. д. элементов показывают степень приближения технологического процесса к равновесию. Расчеты к. п. д. требуют знания равновесных соотношений, хотя эти величины определяются в основном кинетикой процесса фактическое число компонентов, вступивших в химическую реакцию, или количество поглощаемого компонента зависит соответственно от скорости химического превращения или от скорости массопередачи. [c.15]

    О механизме брутто-процесса сульфирования существуют противоречивые мнения скорость брутто-процесса определяется скоростью химического превращения сополимера [31, 32] скорость брутто-процесса лимитируется гелевой диффузией [И, 33]. Оба механизма обладают существенной нестационарностью. [c.346]


    Так как скорость химического превращения лимитируется диффузией через пленку дихлорэтана, то параметром Т-элемента служит эффективный коэффициент массоотдачи Таким [c.349]

    Различают положительный катализ — увеличение скорости резь ции под влиянием катализатора — и отрицательный катализ, при]юдящий к уменьшению скорости химического превращения. При положительном катализе промежуточное взаимодействие реагирующих веществ с катализатором открывает новый, энергети — чес(<и более выгодный (то есть с меньшей высотой энергетического бар ,сра), по сравнению стермолизом, реакционный путь (маршрут). При отрицательном катализе, наоборот, подавляется (ингибируется) быс трая и энергетически более ле1кая стадия химического взаимо — действия. Следует отметить, что под термином "катализ" подразумевают преимущественно только положительный катализ. [c.79]

    Ниже приводится кинетическая модель окислительного дегидрирования бутенов на висмут-молибденовом катализаторе на силиказоле, описывающая скорость химических превращений как в присутствии, так и в отсутствие кислорода в реакционной смеси [16]  [c.688]

    Язвикова Н. В., Лейтес И. Л., Сухотина А. С., Труды научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза, вып. 10, 1971, стр. 54. Скорость химических превращений моноэтаноламина при очистке газов от двуокиси углерода. [c.277]

    Нестационарные концентрации промежуточных образоЕвний каталитического цикла. При гетерогенном катализе на твердых катализаторах — это поверхностные концентрации реактантов и продуктов их превращений, участвующих в цикле элементарных этапов каталитической реакции. Концентрации поверхностных веществ изменяются в результате осуществления стадий каталитического процесса со скоростью, близкой по порядку к скорости химического превращения. Для достаточно быстрых реакций время релаксации поверхностных концентраций составляет 1 — 100 с. [c.287]

    Сечение ионизации и возбуждения быстрым электроном очень слабо зависит от температуры газа. Поэтому главным кинетическим параметром, характеризующим скорость химического превращения всщества в радиациохг-ной химии, является величина G — числе превратившихся молекул па единицу поглощенной веществом энергии (обычно за Taityro единицу берется 100 эв). Эта величина носит название радиациошю-химического выхода. Выход ионизации для разных газов лежит в диапазоне от 2,39 у гелия до 4,46 у бутана [354] и слабо зависит от типа облучения [111]. [c.184]

    Гетерогенные реакции сопровождаются транспортными явлениями внутри фаз и между ними. Это реакции в системах газ— жидкость, жидкость—жидкость, газ—твердое тело, жидкость— твердое тело, газ—жидкость—твердое тело (катализатор), причем они могут протекать в сплошной, дисперсной фазе или одновременно в обеих фазах. Совокупность факторов, которые необходимо учитывать при проектировании гетерогенных реакторов, весьма обширна и разнообразна в зависимости от фазового состояния реагентов и продуктов реакции, их аппаратурного оформления. Поскольку химическому превращению предшествует стадия транспортирования вещества из фазы в зону реакции и отвод продуктов реакции, скорость протекания собственно химического взаимодействия будет определяться соотношением скоростей химического превращения и массоиереноса, и в зависимости от превалирования одной из составляющих она будет протекать или в диффузионной, или в кинетической области. Отсюда следует важность обеспечения необходимых условий массоиереноса за счет гидродинамических факторов, т. е. состояния фаз, а также за счет аг-J)eгaтнoгo состояния реагентов (например, распределения частиц -ПО размерам в случае реакций с твердой фазой). [c.82]

    Уменьшение свободной энергии Гиббса по мере приближения системы к химическому равновесию представляет диссипацию химической энергии системы. Пусть v . — стехиометрический коэффициент при А -м компоненте, участвующем в реакции. Тогда скорость химического превращения можно выразить через скорость изменения количества к-то компонента Д. = dnikldt с помощью соотношения [c.118]

    В ранее рассмотренных энергетических диаграммах химических реакций аналогичная 1-структура связывалась с диссипативным К-элементом для отражения эффекта диссипации химической энергии по мере приближения системы к равновесию. В данном случае, находясь в рамках псевдоэнергетического подхода, важно отразить в диаграмме связи функциональную зависимость (в общем случае нелинейную) скорости химического превращения от состава системы и ее температуры [c.140]

    Приведенные связные диаграммы построены для закрытых систем, идеально перемешанных на атомарно-молекулярном уровне. Для закрытых и открытых систем с неоднородной структурой потоков локальные значения концентраций компонентов определяются не только скоростью химического превращения, но и характером гидродинамической обстановки в системе. При рассмотрении таких систем С-элементы в псевдоэнергетических диаграммах типа (2.68) должны отсутствовать, оставляя свободной связь для стыковки с псевдоэнергетической диаграммой гидродинамической структуры потоков в аппарате [c.142]

    В макростадиях гелевой диффузии и химического превращения сополимера 1) гранула сополимера является изотропным телом, свойства которого не изменяются по сечению в ходе образования продукта 2) выполняются условия равнодоступности поверхности 3) концентрация реагентов в зоне максимальной скорости химического превращения сополимера определяется условиями диффузионного транспорта исходного вещества в зону. [c.338]

    Физико-химические явления процесса фосфорилирования, протекающие в твердой среде, характеризуются существенной неста-ционарностью, сущность которой определяется взаимоотношениями между рассматриваемыми стадиями. Для синтеза диаграммы связи процесса разобьем гранулу сополимера на N зон с характеристическим размером каждая из которых, за исключением последней, геометрически представляет шаровой слой. Будем выделять стадию химического превращения сополимера последовательно в каждой из этих зон, где достигается локальный максимум скорости химического превращения сополимера. Критерием перехода реакционной зоны с г-го в (г + 1)-е положение является условие полного превращения исходного твердого реагента (сополимера) в г-й зоне р (г) 0. В результате последовательно получим топологические суперпозиции. [c.340]

    Специфика физикохимии процесса сульфирования и условия его проведения обусловливают решение задачи моделирования процесса при следующих допущениях 1) каждая гранула сополимера в условиях интенсивного перемешивания окружена сферическим слоем жидкой сферы (сферическая ячеечная модель) 2) жидкая среда идеально перемешана 3) гранула сополимера является изотропным телом, свойство массопроводимости которого не меняется по сечению в ходе образования продукта реакции 4) выполняются условия равнодоступности поверхности 5) концентрация реагентов в зоне максимальной скорости химического превращения сополимера в ионит определяется диффузионным транспортом исходного вещества. [c.352]

    Для процессов фосфорилирования и сульфирования (с предварительным набуханием в дихлорэтане) эффект роста степени превращения связан с повышениел скорости химического превращения на начальных стадиях (см. рис. 5.17). Для процесса сульфирования с предварительныл набуханием в тионилхлориде эта зависимость носит более сложный характер (рис. 5.18). [c.360]

    Тепловая инерционность слоя. Высокая скорость химического превращения в зоне реакции обеспечивается достаточно высокой температурой. При этом следует заметить, что тепловая энергия в зоне реакции, движущейся в направлении фильтрации газа, складывается из энергии реакции и энергии, накопленной слоем катализатора. Перепад температур в зоне реакции оказывается выще адиабатического разогрева. Накопление слоем значительного количества тепла возможно только при достаточно большой тепловой инерционности слоя (т. е. при достаточно большом отношении теплоемкости слоя кат шизато-ра к теплоемкости реакционной смеси). Большая тепловая инерционность слоя обеспечивает медленную, сравнительно со скоростью подачи реакционной смеси, миграцию высокотемпературной зоны реакции. Малая скорость миграции возможна и по другим причинам, например вследствие большой теплопроводности слоя или большого значения адиабатического разогрева. Однако эти факторы при небольшой тепловой инерционности слоя не могут обеспечить разогрев зоны реакции выше адиабатического. Для технологической реализации процесса переключений малая скорость миграции реакционной зоны чрезвычайно существенна. [c.308]


Смотреть страницы где упоминается термин Скорость химических превращений: [c.90]    [c.123]    [c.193]    [c.243]    [c.27]    [c.254]    [c.81]    [c.90]    [c.124]    [c.139]    [c.18]    [c.304]   
Смотреть главы в:

Общие основы химической технологии -> Скорость химических превращений




ПОИСК





Смотрите так же термины и статьи:

Гетерогенная система скорость химического превращения

Определение зависимости концентраций компонентов для стационарного процесса химического превращения в реакторе с мешалкой. Определение оптимальной скорости подачи исходной смеси

Определение скорости, константы скорости, порядка химической реакции и степени превращения

Основные факторы, влияющие на скорость химического превращения вещества

Превращения химические

Скорость отраженных электронов химических превращений

Скорость превращения

Скорость химического превращения гомогенной системы

Уравнения скорости химического превращения веществ

Химические превращения Скорость химической реакции

Химические скорость

Элементы динамики химических превращений. Скорость реакции



© 2025 chem21.info Реклама на сайте