Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетические

Рис. 1.3й, Кинетические кривые дегидрирования бутана. Рис. 1.3й, <a href="/info/6101">Кинетические кривые</a> дегидрирования бутана.

    По Оствальду, любое из этих значений можно было бы с тем же правом, как и величину —0,20 В, полученную для ртути в растворах поверхностно-инактивных веществ, принять за абсолютный нуль электродного потенциала и иметь множество совершенно различных абсолютных шкал потенциалов. Таким образом, потенциалы максимумов электрокапиллярных кривых не могут служить основанием для создания абсолютной шкалы потенциалов. В то же время эти потенциалы, названные Фрумкиным потенциалами нулевого заряда или нулевыми точками металлов, имеют принципиальное значение для электрохимии. На их основе Фрумкину удалось дать одно из наиболее удачных решений проблемы Вольта, о чем уже упоминалось ранее. Антропов показал важную роль, которую играют потенциалы нулевого заряда в электрохимической кинетике, и дал первые кинетические уравнения, в которых наряду с отклонением потенциала от равновесного фигурирует также отклонение его от нулевой точки электродного металла. [c.250]

    Для реакций, протекающих в кинетической области, скорость реакции быстро возрастает с температурой, тогда как для диффузионной области характерно медленное изменение скорости реакции в зависимости от температуры, поскольку коэффициент диффузии мало зависит от температуры. [c.273]

    Однако простейшие реакции встречаются сравнительно редко в промышленных условиях. Поэтому, как правило, зависимость между выходом продуктов реакции и временем реагирования, найденная опытным нутом, может быть выражена либо в виде эмпирических уравнений, либо в виде кинетических кривых. [c.265]

    Для определения времени нагрева т (с) при соответствующей степени превращения вещества в первом приближении можно использовать кинетическое уравнение константы скорости реакций к термического крекинга углеводородов. [c.53]

    Изменение температуры определяется видом кинетической кривой, т. е. кривой зависимости скорости реакции от времени, поскольку выделение или поглощение тепла примерно пропорционально количеству прореагировавшего продукта. [c.263]

    ОСНОВНЫЕ КИНЕТИЧЕСКИЕ ЗАВИСИМОСТИ [c.264]

    На рис. 135 и 136 приведены кинетические кривые процессов каталитического крекинга вакуумного газойля и дегидрирования [c.267]

    Кинетическая область. Скорость суммарного процесса определяется скоростью собственно реакции (как наиболее медленной стадии). [c.272]

    О р о ч к о Д. И. Кинетические расчеты проточных реакционных устройств длп нроцессов синтеза жидких топлив. Гостоптехиздат, 1947. [c.306]


    Примерно в то же самое время анализом поведения газов занимались шотландский физик Джеймс Кларк Максвелл (1831 — 1879) и австрийский физик Людвиг Больцман (1844—1906). Эти ученые установили следующее. Если предположить, что газы представляют собой совокупность большого числа беспорядочно движущихся частиц (кинетическая теория газов), то закон Бойля выполняется в том случае, если, во-первых, между молекулами газа не действуют силы притяжения и, во-вторых, молекулы газа имеют нулевые размеры. Газы, отвечающие этим требованиям, были названы идеальными газами. [c.120]

    Ч — редокси-кинетический потенциал (В) [c.8]

    Более полную картину электродного равновесия можно получить, применив к электрохимическим системам наряду с термодинамикой также молекулярно-кинетическую теорию и модельные представления. [c.23]

    Кинетическая теория электропроводности [c.128]

Рис. 135. Кинетические кривые стуиевчато-противоточного каталитического крекинга вакуумного газойля при 475° С. Рис. 135. <a href="/info/6101">Кинетические кривые</a> стуиевчато-<a href="/info/1801500">противоточного каталитического крекинга</a> вакуумного газойля при 475° С.
    Если продукты восстановления (или окисления) адсорбируются на электроде, экранируя заметную часть его поверхности 0, которой уже нельзя пренебречь, то уравиение (17.67) должно быть модифицировано в соответствии с кинетическими особенностями, отличающими данную электродную реакцию. Этот случай целесообразно рассмотреть на примере реакции катодного выделения водорода из кислых и щелочных сред  [c.361]

    Для каждой из двух стадий можно написать соответствующее кинетическое уравнение  [c.363]

    ОСНОВНЫЕ КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОХИМИЧЕСКОЙ СТАДИИ [c.364]

    Уравнение (17.107) непосредственно следует из общих кинетических уравнений, дифференцирование которых по концентрации данного вида частиц дает соответственно порядок катодной или анодной реакции по отношению к этому виду частиц. При этом для нахождения порядка катодной реакции необходимо располагать кинетическими данными в той области потенциалов, в которой можно пренебречь скоростью обратной реакции, т. е. при л-сО для нахождения порядка анодной реакции — соответственно данными в той области потенциалов, где можно пренебречь скоростью прямой реакции, т. е. при г 0. [c.368]

    Если бы реакция протекала в соответствии с (17.108), то кинетическое уравнение имело бы следующий вид  [c.368]

    Для 1 ыоора схемы реакторного устройства н кинетического расчета необходимо располагать данными о тепловых эффектах химических реакций. Тепловые эффекты реакции можно определять экспериментально. Их можно также вычислять по закону Гесса как разность теплот образования продуктов реакции и исходного сырья нибо как разность теплот сгорания исходного сырья и продуктов реакции. [c.271]

    Временно наиболее эффективным способом удаления адсорбированного водорода. При диффузионном механизме все стадии протекают быстрее, чем удаление молекулярного водорода, растворенного в слое электролита, примыкающем к поверхности электрода. Кроме перечисленных, возможны также и другие кинетические варианты катодного выделения водорода. Так, например, может оказаться, что константы скорости двух или большего числа стадий мало отличаются друг от друга. Тогда при изменении условий, в которых происходит реакция, один механизм может замениться другим. При неизменных условиях на одном и том же электроде вследствие неоднородности его поверхности могут существовать участки, где выделение водорода совершается разными путями. [c.406]

    Политропический процесс, протекающий с отводом или подводом тепла, когда скорость отвода или подвода тепла не пропорциональна количеству выделенного или поглощенного тенла. В рассматриваемом случае температура в реакторе также меняется от входа к выходу, но характер температурной кривой зависит в большей степени от работы поверхности теплообмена, чем от вида кинетической кривой. К полптропическим системам могут быть отнесены реакционные секции змеевиков печей термического крекинга и пиролиза, реакторы каталитического крекинга с неподвижным катализатором в процессе регенерации, змеевиковые реакторы полиэтилена ысокого давления и др. [c.263]

    Для кинетического расчета реакторных устройств необходимо знать закон изменения скоростп реакции или концентрацпи реагирующих веществ во времени. С увеличепием скорости реакции сокращается время реагирования, необходимое дли /(остижепия заданного выхода продуктов реакции. [c.264]


    При электрохимической реакции прямой контакт между реагирующими частицами заменяется их контактом с соответствую-и им металлом. Прн этом реакция и связанные с ней энергетические изменения остаются теми же (независимо от того, протекает она но химическому или же электрохимическому нути), но кинетические условия могут быт з различными. Энергия активации при электрохимическом механизме благодаря каталитическим свойствам металлов может быть иной, чем при гомогенном химическом механизме, кроме того, оиа зависит от потенциала. В электрохимических реакциях обязательно участвуют электроны, а часто и другие заряженные частицы — катионы и анионы, что составляет одну нз и. основных характерных особенностей. Энергия таких частиц, естественно, является функцией электрического поля, создаваемого на границе электронопроводяи1,ее тело — электролит. [c.11]

    Вссьма полезным для решения части этих задач оказалось привлечение к рассмотрению явлений электропроводноетн теории абсолютных скоростеу реакций и кинетической теории жидкого состояния. Эти теории рассматривают перемещение ионов не как непрерывное движение ионов в вязкой среде, а как последовательную серию скачков из одного промежуточного состояния равновесия в [c.128]

    Ири исполь.зованни диаграмм Пурбе необходимо иметь в виду, что основанные иа них выводы являются лини, термс динамически наиболее вероятными они указывают на термодинамическую возможность или невозможность того или 1Ш0Г0 процесса. В реальных условиях пе исключены отклонения от сделанных выводов и протекающие процессы могут быть из-за кинетических ограничений иными, чем те, которые следуют нз общих термодинамических соотношений. [c.192]

    При помощи этого, а также ряда других методов удалось не только подтвердить сам факт обмена ионами, но и количественно оценить его. Поскольку в обмене участвуют заряженные частицы, то его интенсивность можно выразить в токовых единицах и охарактеризовать токами обмена / . Токи обмена относят к I см2 (I и ) поверхности раздела электрод — раствор они служат кинетической характеристикой равновесия между электродом и раствором при равновесном значении электродного потенциала и обозначаются / . Одни из первых работ по определению токов обмена были выголнены В. А. Ройтером с сотр. (1939). Значения токов обмена для ряда электродов приведены в табл. 10.2. Интенсивность обмена зависит от материала электрода, природы реакции и изменяется в широких пределах. По третьему принципу осмотической теории Нернста токи обмена возникают в результате существования сил осмотического давления раствора и электролитической упругости растворения металла. [c.218]

    Формула Нернста справедлива для электродов первого рода, и область ее применения ограничена электродами этого типа. Необходимо, однако, отметить, что эту ограниченность не следует считать непреодолимым недостатком теории Неристз. Так, например, Петерс (1898) показал, что, используя основные представления Нернста, можно получить согласующиеся с опытом уравнения для редокси-электродов. Идеи Нернста былу развиты в работах Батлера (1924), которому удалось кинетическим путем вывести уравиения применительно к различным типам электродов. [c.220]

    Представления, аналогичные тем, которые лежат в основе гидра-тационной теории Писаржевского — Изгарышева, были использованы впоследствии в работах других авторов. Так, Герни (1931), рассматривая электродное равновеср.е, применил кинетический метод Батлера и впервые учел возможность туннелирования электронов из металла на ион в растворе. (Сделав некоторые упрощающие допущения о механизме перехода заряда на границе металл — раствор, Герни получил следующее уравнение для равновесного электродного потенциала металла М  [c.223]

    Скорость электрохимической реакции (17.1) в единицах плотности тока в прямом j и обратном / направлениях можно описать общими кинетическими уравениями  [c.348]

    В результате электрохимического акта образуется адсорбированный катодом атомарный водород. При заданной плотности тока доля поверхности электрода, занятая атомами водорода, составляет некоторую величину 0 н. Если поляризация электрода обусловлена только замедленностью электрохимической стадии, то все остальные стадии, в том числе и удаление адсорбированного водорода, совершаются с несравненно большими скоростями, чем перенос заряда, и, следовательно, заполнение при данном токе должно быть равно (или почти равно) заполнению 0н в отсутствие результативного тока, т. е. при равновесном потенциале водородного электрода 0 н = 0н- Степень заполнения поверхности электрода адсорбированным атомарным водородом в условиях его катодного выделения определяется в первую очередь природой металла и для данного металла зависит от потенциала электрода. Она ничтожно мала (0 = 0) на Нд, РЬ, Сс1 и на других мягких или ртутеподобиых металлах. В согласии с этим выделение водорода по реакциям (17.78) и (17.79) может происходить несколькими путями и, соответственно, описываться различными кинетическими уравнениями. [c.361]

    Анализ кинетических уравнений, описывающих электрохимическое персаапряжение, показывает, что наиболее важными его характеристиками следует считать ток обмена /о и коэффициент переноса а. При одном и том же отклонении потенциала электрода от равновесного значения скорость реакции (результативная плотность тока) будет тем больше, чем выше ток обмена. Последний, в свою очередь, озвисит от природы. электро нмической реакции, материала электрода и состава раствора. Коэффициент переноса характеризует степень влияния электрического поля электрода на энергию активации электрохимической стадии и определяет также симмет- [c.364]

    Все эти варианты нахождения главных кинетических характеристик злектро.химического акта приводят к правильным результатам лишь в том случае, когда можно пренебречь величиной 32-по-тенциала и ее изменением с перенапряжением, т. е. при соблюдении условий, сформулированных в начале данной главы (см. с. ООО). [c.366]


Смотреть страницы где упоминается термин Кинетические: [c.264]    [c.266]    [c.267]    [c.97]    [c.279]    [c.57]    [c.72]    [c.97]    [c.98]    [c.324]    [c.352]    [c.369]    [c.374]    [c.389]    [c.392]   
Органическая химия (1979) -- [ c.0 ]

Химия полимеров (1965) -- [ c.0 ]

Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте