Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кошланда

    Специфичность ферментов связана с комплементарностью структуры их активного центра со структурой субстратов. Активный центр, как правило, располагается в полости макромолекулы фермента. Согласно теории Кошланда, эта комплементарность является индуцированной субстрат в момент взаимодействия с активным [c.187]

    Специфичность ферментов связана с комплементарностью структуры и их активного центра со структурой субстратов. Активный центр, как правило, располагается в полости макромолекулы фермента. Согласно теории Кошланда эта комплементарность является индуцированной субстрат в момент взаимодействия с активным центром вызывает такое изменение геометрии фермента, которое соответствует оптимальной для данной реакции ориентации каталитических групп. [c.241]


    Кошланд сформулировал следующие положения [70]  [c.388]

    Наглядная модель действия модификатора по Кошланду показана на рис. 6.20 [72]. Ингибитор конкурентен, если группа В [c.389]

    Изучая внутримолекулярную реакцию образования лактонов, в которой наблюдается увеличение скорости на 3—6 порядков по сравнению с бимолекулярной реакцией, Кошланд [65] предложил новое понятие — орбитальное управление. Исходя из проведенных экспериментов, он предположил, что управление реагирующими атомами может вызвать (или объяснить) высокие скорости реакции. Реагирующие группы не только должны быть сближены, но и правильным образом ориентированы. При использовании таких представлений важную роль играют эффекты и сближения, и ориентации. В более жестких молекулах реакция идет с большей скоростью. Согласно представлениям Кошланда, уменьшение поступательной энтропии имеет не столь важное значение, как это предполагал Дженкс. [c.212]

    Представление о конформационной подвижности активного центра при взаимодействии его с субстратом не противоречит современным рентгеноструктурным данным, которые в литературе начали трактовать так, как если бы химотрипсин имел исключительно жесткое строение [18]. В этой связи следует учесть, что разрешение кристаллографического метода не превышает 2 А. В то же время Кошланд мл. и сотр. [124] (см. также [125]) полагают, что высокая эффективность катализа может быть достигнута лишь в том случае, если точность [c.156]

    Изучение переходного состояния имеет важнейшее значение не только для органической химии. Все биохимические процессы фермент — субстратного взаимодействия также протекают через активированный комплекс. Специфичность биохимических процессов обусловлена не тем, что субстрат и фермент строго соответствуют друг другу как ключ и замок, такое соответствие приводило бы лишь к комплексообразованию с минимумом энергии для системы. Как показал Кошланд, подобное соответствие является индуцированным, оно возникает в момент взаимодействия фермента и субстрата и сопровождается деформациями молекул. Так, гидролиз гликозидной связи лизоцимом сопровождается изменением конформации пиранозы в полу-кресло только такая конформация соответствует стереохимии реакционного центра фермента. [c.164]

    В сущности, согласно гипотезе Кошланда, повышение скорости реакции образования лактонов во внутримолекулярной реакции вызвано тем, что нути сближения реагирующих групп ограничены некоторыми вполне определенными направлениями в противоположность статистической ориентации, наблюдаемой при бимолекулярной реакции. Кошланд считает, что орбитальное управление способно объяснить, почему ферменты столь эффективны. Вероятно, ферменты выстраивают связывающие орбитали реагирующих молекул и каталитических групп с точностью, невозможной при обычном бимолекулярном столкновении в растворе. Фермент не только сближает субстраты, (эффект сближения Брюса) существует еще фактор ориентации, связанный с формой электронных орбиталей реагпиюнноспособных атомов. Это-то и должно вызывать уникалы, ю каталитическую активность ферментов. Удивительная каталитическая активность ферментов, следовательно, вытекает не только из их способности приблихоть реагирующие атомы, но также и направлять орби- [c.212]


    Органические соединения в целом образуют колоссальный фонд молекулярных структур, составленных из относительно прочных каркасов (цепи и циклы из звеньев С—С и С = С), способных создавать множество пространственных конфигураций, стабилизированных небольшими энергетическими барьерами. В каталитически активных структурах—в активных группах ферментов— энергетические барьеры для определенных движений очень малы. Согласно взглядам Кошланда, получившим и опытное подтверждение, фрагменты активных групп ферментов движутся в процессе каталитического превращения, приспосабливаясь к строению молекулы субстрата. Следовательно, органические соединения строят отношения со средой главным образом на языке геометрии взаимодействующих частиц. Для них пространственные коды имеют хотя и не исключительное, но первостепенное значение. По сравнению с общим числом соединений углерода число определенных типов органических соединений, вовлеченных в процесс образования живого вещества, не слишком велико. [c.167]

    Если кооперативность положительна, т. е. присоединение лиганда активирует фермент, модели прямой и косвенной кооперативности могут приводить к эквивалентным результатам. Однако, в отличие от модели МУШ, модель прямой кооперативности может описывать и отрицательную кооперативность, т. е. уменьшение сродства к лиганду по мере насыщения активных центров (КоШланд). [c.202]

    Последовательное развитие теории индуцированного структурного соответствия в ферментативном катализе было проведено Кошландом [69]. Задача теории состояла прежде всего в объяснении специфичности ферментов, катализирующих реакции переноса связи типа [c.388]

    Для подтверждения качественных положений теории Кошланда нужно доказать, что при взаимодействии белка с лигандами действительно происходят конформа-ционные изменения и что они служат прп-чиной наблюдаемого возрастания скорости. [c.390]

    Аргументом в пользу орбитального управления Сторм и Кошланд [18] считают, что в ряду соединений XI—XIV при замене атома О на 8 происходит сильное изменение порядка расположения этих соединений по их реакционной способности. Относительные скорости образования соответствующих тиолакто-нов XI XII XIII XIV = 70 115 2,5- 10 427 (ср. с данными табл. 13). В ферментативных системах замена ОН-группы серина активного центра на 8Н-группу также приводит к значительному изменению скорости. Например, такая модификация субтилизина вызывает сильное уменьшение активности фермента [22]. Подобные аргументы, однако, нельзя считать вполне обоснованными. Замена О на 5 сопровождается не только небольшими изменениями в геометрии системы (что считается в [18] основным следствием такой замены), но также значительными изменениями в электронном строении. Известно, например, что [c.79]

    Прямое подтверждение теории Кошланда получено при исследовании карбоксипептидазы [39, [c.393]

    Очевидно, что не следует понимать теорию Кошланда как теорию гибкой структуры фермента. Фермент скорее можно сравнить с механизмом, функциональные части которого могут испытывать дискретные перемещения, транслокации, необходимые для структурных соответствий с лигандами. Конструкция такого механизма характеризуется не пластичностью, но, скорее, упругостью. Модель белковой глобулы, построенная из шарнирно сочлененных упругих стержней (см. стр. 252), согласуется с фактами, полученными при изучении ферментов. [c.393]

    Следует подчеркнуть, что свойства глобулы как целого, за исключением наличия в ней полости с неполярными остатками, не учитываются ни в теории Кошланда, ни, тем более, в химических теориях взаимодействий в активных центрах ферментов. [c.399]

    Возражая Брюсу, Кошланд привел результаты, касаюшиеся бициклических жестких молекул, содержащих атом не кислорода, а серы в качестве нуклеофильного центра [67, 68]. [c.213]

    Вопрос о том, возникает ли эффект ориентации вследствие орбитального управления или же благодаря устранению невыгодных конформационных состояний, имеет значение лишь потому, что, согласно первой концепции, орбитальное управление влияет на переходное состояние, тогда как второй эффект возникает вследствие ограничения возможных основных состояний. Из полученных данных совершенно ясно, что сближение внутримолекулярного нуклеофила с реакционным центром может привести к значительному увеличению скорости реакции. Согласно точке зрения Брюса, преимущество внутримолекулярных реакций имеет энтропийную природу вследствие ограничения числа степеней свободы в основном состоянии. Дискуссия Брюса и Кошланда составляет часть более обширного вопроса о том, почему внутримолекулярные реакции столь выгодны. Истина, вероятно, заклю- [c.214]

    Именно этой проблеме посвящен настоящий раздел, где за основу принята сравнительно новая концепция органической химии, стереоэлектронного контроля, предложенная Делоншамом [114, 115]. Эта концепция учитывает свойства правильной ориентации орбиталей при расщеплении тетраэдрического интермедиата в гидролитических реакциях и совершенно отличается от гипотезы орбитального управления Кошланда, в которой правильное расположение орбиталей способствует образованию тетраэдрического интермедиата. Обсудим с этих позиций расщепление тетраэдрического интермедиата прн гидролизе эфиров и амидов. [c.243]


    Существуют и другие объяснения столь высоких эффектов ускорения внутри-ыолеку.тярных (ферментативных) процессов среди них наиболее популярно представление Кошланда мл. с сотр. [36, 37] об орбитальном управлении (orbital sleering) внутримолекулярных реакций. Эта концепция, однако, подвергалась критике за необоснованное введение новой терминологии [33, 34], а также в связи с тем, что авторы ее, принимая в расчет весьма тонкие эффекты ориентации взаимодействующих орбиталей, не дооценивают тот очевидный вклад, который вносит в ускорение внутримолекулярных реакций замораживание поступательных и вращательных степеней свободы реагирующих групп в целом [21]. [c.53]

    В последние годы широкую известность приобрело исследование Сторма и Кошланда [18], посвященное лактонизации ряда оксикислот  [c.79]

    РИС. 4-16. Возможные формы димеризующихся белков, существующих в двух конформационных состояниях в каждом протомере имеется один центр связывания с лигандом X. Пунктирными стрелками указаны равновесные процессы, рассмотренные Моно, Уайменом и Шанжё, а сплошными — Кошландом и др. [61, 62]. Жирные стрелки относятся к простейшей модели индуцированного соответствия, не учитывающей диссоциации димера. (Заметим, что, хотя все стрелки имеют только одно направление, соответствующие процессы обратимы.) Величины Ках и Квх считаются одинаковыми для всех субъединиц независимо от того, в какой форме они находятся — в мономерной или димерной. [c.300]

    Сторм и Кошланд [18] недооценили роли сближения, ограничившись для ее оценки одним фактором разбавления, равным 55 М (см. 3 гл. II). В действительности эффект сближения может быть значительно большим, и тогда наблюдаемое значение для XIV (см. табл. 13) не выходит за рамки предельной величины, предсказанной уравнением (2.30). [c.80]

    Для того чтобы привести эту теорию в соответствие с опытными данными, Кошланд несколько видоизменил модель ключ — замок . Согласно его гипотезе субстрат, присоединяясь к активному центру, изменяет его форму, обеспечивая таким образом идеальное их соответствие. Иными словами, функииональные группы в активном центре принимают специфическую пространственную конфигурацию только тогда, когда их вынуждает к этому присутствие субстрата. [c.168]

    Кооперативность связывания кислорода с гемоглобином была открыта очень давно, и, несмотря на это, важность данного явления недооценивали. Оно вновь привлекло к себе широкое внимание в 1965 г., когда Moho, Уаймен и Шанжё [33] описали его математически. Поскольку для многих случаев предложенная авторами модель является сильным упрощением, ниже мы остановимся на более общем подходе к этому вопросу, разработанном Кошландом [60—62]. [c.297]

    Динамическая структура белковых макромолекул ферментов, постулированная Ламри, Линдерштром-Лангом и Кошландом, которая проявляется в локальной тепловой подвижности отдельных участков и в способности к индуцированным конформационным переходам, играет первостепенную роль в реализации таких функ- [c.188]

    Специфичность ферментов связана с комплементарностью структуры их активного центра со структурой субстратов. Активный центр, как правило, располагается в полости макромолекулы фермента и формируется из различных участков цепи белковой глобулы. Согласно теории Кошланда, эта комплемен-тарность является индуцированной субстрат в момент взаимодействия с активным центром вызывает такое изменение геометрии фермента, которое соответствует оптимальной для данной реакции ориентации групп, непосредственно участвующих в химическом превращении субстрата (каталитических групп). В случае объемных субстратов происходит многоцентровая сорбция в активном центре за счет дисперсионных, гидрофобных и электростатических взаимодействий и водородных связей. Малые молекулы, такие как О2, N2 и Н2О, вступают в непосредственное взаимодействие с атомами переходных металлов. Однако и в этом случае связывание обычно носит много-центровый характер, например в биядерных комплексах или с участием безметальных групп. Так, в случае комплексования молекулы О2 в гемоглобине с ионом Fe " " происходит образование водородной связи с протонированным гистидиновым остатком в районе активного центра. [c.550]

    Динамическая структура белковых макромолекул ферментов, постулированная Ламри, Линдерштром-Лангом и Кошландом, которая проявляется в локальной тепловой подвижности отдельных участков и в способности к индуцированным конформационным переходам, играет первостепенную роль в реализации таких функционально важных свойств ферментов, как динамическая адаптация формы фермента к структуре каталитических и субстратных групп, меняющаяся в процессе химической реакции, аллостерическое взаимодействие между пространственно разобщенными центрами, реализация принципа компле-ментарности свободных энергий (по Ламри) и индуцированного соответствия (по Кошланду). [c.242]

    Предложен еще ряд теорий, детализирующих отдельные положения (В. Бейлис, Варбург, В. Лангенбек, Эйлер, Кошланд и др.) ферментативного катализа, объясняющих также ферментативные реакции с двумя субстратами, влияние на эти процессы температуры, pH, ингибиторов, активаторов и т. д., но указанные вопросы выходят за пределы настоящего курса и должны рассматриваться в курсе биологической химии. [c.131]

    В свое время Фишер предложил модель ключ — замок для рассмотрения фермент-субстратного взаимодействия. Фермент и субстрат обладают жесткими структурами, причем фермент подогнан к субстрату как замок к ключу. Ряд фактов противоречит такой модели — взаимодействие фермента с субстратом имеет, по-видимому, не статический, а динамический характер. Кошланд предложил модельную теорию индуцированного структурного соответствия фермента и субстрата. Перечислим исходные положения этой теории, задачи которой состояли прежде всего в объяснении специфичности ферментов, катализируюхцих реакции переноса связи [c.189]

    Исключительно высокие скорости и степень селективности ферментативных реакций с давних пор интригуют химиков-органиков. Многочисленные предположения, начиная с более чем столетней давности идеи ключ-замок Э.чи-ля Фишера и до более современной ковдегшии взаимоиндуцированного соответствия Кошланда были выдвинуты для объяснения этих явлений. Каковы бы ни были конкретные подробности различных интерпретаций, все они предполагают тот или иной род фиксации субстрата внутри полости активного центра конформационно подвижной молекулы фермента вблизи его реакционноспособных групп. Возникающее в результате взаимодействие между реакционными центрами фермента и реакционноспособной конформацией субстрата считается одной из главных причин высоких скоростей и селективности, свойственных ферментативным реакциям. Дизайн химических структур, пригодных для экспериментального исследования относительной важности различных факторов, определяющих скорости и селективность органических реакций как моделей определенных аспектов ферментативного катализа, был и остается областью, вызывающей напряженное внимание. [c.486]

    Эти положения иллюстрируются рис. 6.18. Рис. 6.18, в и г показывают, почему молекулы, сходные с субстратом, но отличные от него по размерам, нереакционноспособны. Согласно модели Кошланда специфичность и каталитическая эффективность фермента связаны друг с другом, но их механизмы различны, и реакция осуществляется только при надлежащем взаимном расположении сорбирующих и каталитического центров относительно молекулы субстрата. Кошланд иллюстрирует это примером Р-амилазы [71]. Этот фермент действует на конечные группы амилозы, но не на другие глюкозидные связи полисахарида. Циклоамилозы являются конкурентными ингибиторами фермента. Сказанное поясняется схемой на рис. 6.19. Реакция происходит лишь при определенном пространственном расположе- [c.388]

    Обратите внимание, что константа, характеризующая равновесие между АХ и ВХ, является функцией трех других констант, а именно KiKbx/Ka x.- Теперь рассмотрим следующую ситуацию. Предположим, что в отсутствие X преобладает А, однако X более прочно связывается с В, чем с А. Тогда в равновесной смеси будут преимущественно присутствовать или свободный А, или ВХ (в меньших количествах будут находиться также АХ и В). Возникает интересный с точки зрения кинетики вопрос по какому из двух возможных путей будет протекать реакция перехода от А к ВХ [уравнение (44)] Первый вариант, рассматриваемый в модели Моно—Уаймена—Шанжё, предполагает, что X связывается только с В, небольшое количество которого присутствует в смеси в равновесии с А. Согласно второму варианту, X связывается с А, но АХ затем быстро переходит в ВХ. Можно сказать, что X вызывает (индуцирует) конформационное изменение в белке А, облегчающее состыковку . Именно на этом основана концепция Кошланда, известная под названием концепции индуцированного соответствия. Следует иметь в виду, что, зная константы равновесия, можно определить только равновесные концентрации всех четырех форм, присутствующих в уравнении (4-44). Однако при изучении метаболизма нас чаще интересуют скорости тех или иных реакций, а не равновесное состояние, а исходя только из данных для равновесной системы, а priori нельзя сказать, по какому из двух возможных путей будет реально протекать данная реакция. [c.298]

    Модель индуцированного соответствия Кошланда [61, 62] В этой модели рассматриваются только формы Аг, АВХ и В2Х2 (жирцые [c.301]

    Иногда Кошланд произвольно принимает Каа=1, считая, что Къъ — это константа взаимодействия, равная Къъ Ккк. Хотя это условие и упрощает алгебраические преобразования, оно правомерно лишь в случае полностью ассоциированных систем, лоэтому в данной книге мы будем пользоваться константами, определяемыми уравне-ниями (4-46) — (4-48). [c.302]

    Допустим, что график зависимости скорости ферментативной реакции от концентрации субстрата указывает на то, что имеет м.есто отрицательная кооперативность. Можно ли объяснить ее наличие на основе. модели Моно, Уаймена и Шанжё для олигомерных ферментов и на основе модели Кошланда, Немети и Фил-мера Обоснуйте ваш ответ. [c.77]

    Третьей концепцией является гипотеза Кошланда о принудительном индуцированном соответствии структуры фермента структуре субстрата при их взаимодействии. Согласно гипотезе, присоединение субстрата к ферменту должно сопровождаться изменением конформации последнего. Применительно к ме-таллоферментам гипотеза об индуцированном соответствии была конкретизирована М.В. Волькенштейном в виде представлений об электронно-конформационном соответствии, каждому электронному состоянию атома металла в ферменте (валентность, спиновость и т. д.) соответствует определенная конформационная структура белковой глобулы. В состоянии равновесия система может быть охарактеризована как конформен (по аналогии с поляроном, характеризующим состояние электрического заряда и окружающей среды в кристаллах). [c.555]

    Ряд фактов свидетельствует о конформационных превращениях ферментов (см. [68, 71]). В присутствии субстратов некоторые ферменты становятся более жесткими, другие, напротив, более лабильными — легче денатурируются при нагревании [75]. Субстраты индуцируют диссоциацию глута-матдегидрогеназы [76] и гексокиназы [77]. Под действием субстрата изменяется реакционная способность аминокислотных остатков фермента так, иодирование пен.ч-циллиназы усиливается субстратом [78]. Эти явления можно объяснить моделью Кошланда [79] (см. также обзоры [80, 81]). [c.390]

    Механизм дыбы должен следовать из теории глобулы Лиф-шица (см. стр. 236), согласно которой даже гомогенная глобула представляет собой систему с дискретными уровнями свободной энергии. Флуктуации ее оболочки могут обеспечить гшдуциро-ванное структурное соответствие, предполагаемое Кошландом, а изменение уровня свободной энергии глобулы при сорбции субстрата эквивалентно накоплению энергии упругой деформации. Возможно, что эти представления окажутся полезными для понимания работы ферментов. [c.402]


Смотреть страницы где упоминается термин Кошланда : [c.214]    [c.345]    [c.79]    [c.189]    [c.197]    [c.251]    [c.730]    [c.10]    [c.478]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.356 ]




ПОИСК







© 2025 chem21.info Реклама на сайте