Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Визуальные наблюдения

    Наиболее полно изучены зоны аэродинамических теней бесконечных цилиндрических тел и прямоугольных тел (промышленных и жилых зданий). Зоны аэродинамических теней цилиндров конечной длины, расположенных близко друг от друга, не изучены. Этим и была продиктована необходимость проведения специальных лабораторных исследований на модели резервуарного парка, расположенного в аэродинамической трубе [50]. При исследованиях на моделях использовали визуальные наблюдения, фотографирование и зарисовку воздушных потоков по отклонениям шелковинок и дымовых струек, по которым судили о характере изменения скорости и направления воздушного потока около одиночного резервуара и группы резервуаров, а также определяли формы и размеры аэродинамической тени при различных скоростях ветра (рис. 16). [c.147]


    В результате многочисленных визуальных наблюдений и фоторегистраций процесса образования горючей смеси в карбюраторном двигателе установлено, что часть капель при выходе из диффузора карбюратора оседает на стенках впускного трубопровода и образует пленку жидкого топлива. Паро-воздушный поток увлекает пленку по стенкам впускного трубопровода в направлении цилиндров двигателя. Даже при полированных стенках тракта скорость перемещения пленки жидкого топлива в 50—60 раз меньше скорости -паро-воздушной смеси. При движении пленки с ее поверхности происходит интенсивное испарение бензина [6]. [c.33]

    Чувствительность реакции при визуальном наблюдении 5 мкг и 10 мл неводного растворителя при экстрагировании из 50 мл водного раствора. [c.488]

    При визуальном наблюдении окрашенных струек жидкости от усредненной траектории потока в зернистом слое Карман [c.35]

    В работах [20—26] предложены различные модификации моделей с застойными зонами. В качестве последних рассматривали заторможенный слой у поверхности зерен, который особенно резко утолщается вблизи точек контакта между ними [19]. Вводили конвективный массоперенос из проточных зон в застойные [26]. Застойную зону вблизи точек контакта рассматривали как бы состоящую из двух частей — вихревой, или ячейки идеального смешения, и диффузионной, в которой циркуляция жидкости отсутствует. Визуальные наблюдения [24] показали, что такая неоднородность структуры застойных зон воз- [c.90]

    Исполнение дренажных трубопроводов от складских емкостей до отпарной емкости исключало возможность визуального наблюдения за струей при сливе. Отсутствовали какие-либо другие средства контроля за уровнем раздела фаз при дренаже. [c.180]

    Эти уравнения, как известно, получены в предположении постоянства концентраций вдоль гидродинамических линий тока. При условия постоянства концентраций экстрагента и хемосорбента вдоль линий тока выполняются на поверхностях, расположенных сколь угодно близко от фронта реакции. Поэтому можно считать, что фронт реакции также совпадает с линиями тока. Отметим, что в экспериментальном исследовании [406], где при больших значениях Кг проводилось визуальное наблюдение движения фронта реакции, показано, что вид поверхности реакции близок по форме к виду поверхностей тока. [c.278]

    Основными элементами камеры сгорания ГТД являются кольцевая часть 2 (рис. 108) и четыре форкамеры I. Так как установка УНТ-1 предназначена для оценки нагарных свойств различных топлив, то для удобства визуального наблюдения за состоянием отложений и определения их массы одна форкамера 3 выполнена съемной. Такая конструкция камеры сгорания позволяет производить демонтаж съемной форкамеры после проведения испытания, ее фотографирование и повторное взвешивание. [c.242]


    Визуальными наблюдениями отмечено слабое радиальное перемешивание жидкости между двумя встречными ее потоками (центральным и периферийным). [c.200]

    Что бы на них ответить, нам надо будет рассмотреть свойства воды. Для этого кроме визуальных наблюдений могут потребоваться измерения с помощью специальных приборов. Для производства измерений ученые выбрали метрическую, систему мер. [c.15]

    Полуавтоматическая сварка в среде газов может рассматриваться как разновидность сварки с регулированием термических циклов. Помимо технологических преимуществ перед ручной дуговой сваркой (высокая производительность, низкая стоимость сварочных матфиалов, визуальное наблюдение за ванной и дугой, возможность сварки в различных пространственных положениях), за счст высокой степени сосредоточения тепла в небольшом объеме зоны дуги и охлаждения зоны сварки струей защитного газа способствует минимальному перегреву металла шва и околошовных зон. Использование аустенитных сварочных проволок с повышенным содержанием марганца марки Св-08Х20Н9Г7Т и Св-05Х5Н40Г7М8Т при полуавтоматической сварке в среде СОг обеспечивает получение достаточно качественных сварных соединений. При этом в процессе изготовления сварных изделий 228 [c.228]

    Визуальное наблюдение за поведением твердых частиц ацетилена в жидком кислороде показало, что в некипящем жидком кислороде частицы твердого ацетилена всплывают, а в некипящем азоте — оседают в ки- [c.95]

    Большинство промышленных процессов в псевдоожиженных системах реализуется в металлических аппаратах, поэтому они недоступны для визуальных наблюдений. Однако наличие газовых пузырей часто можно обнаружить по флуктуациям давления газа или по вибрации аппарата (особенно в случае псевдоожиженного слоя больших размеров.). Эти флуктуации примерно соответствуют прорыву свободной поверхности слоя крупными пузырями, и по ним можно приближенно судить о частоте барботажа пузырей. Для многих промышленных установок такая информация является единственно возможной. [c.123]

    В. Визуальные наблюдения потока [c.577]

    Выбор примеси, окрашивающей зерна при поглощении ими последней, позволяет вести визуальное наблюдение за положением фронта. Для экспериментов [94] использовали слой шарообразных зерен диаметром d = 6 мм с сильно развитой сорбционной поверхностью, пропитанных уксуснокислым свинцом. Зерна засыпали в стеклянную трубку с колосниковой решеткой и слоем стальных шаров для достижения равномерного распределения газа на входе. Воздух с постоянной концентрацией сероводорода продували с линейной скоростью и == 0,01—0,04 м/с, что соответствует Re = 4 — 16. При поглощении HaS белая поверхность РЬ(СНзСОО)2 принимает чернуюокраску PbS и фронт поглощения выявляется достаточно резко. Стенки трубки [c.75]

    В покоящейся жидкости датчик не зафиксировал одиночных пузырей. Визуальные наблюдения за образованием газовых пузырей при одиночном отверстии в случае двухмерного жидкостного псевдоожижения подтвердили, что устойчивые газовые полости l, m "" (идд каналы) образуются в не- [c.660]

    Для исследования суспензий, разделяющихся с большой скоростью, что затрудняет визуальное наблюдение за процессом, применена фильтровальная установка, позволяющая пользоваться осциллографом [149]. Она включает консольную балку, на свободный конец которой подвешена тарелка с мерным сосудом. Деформация балки измеряется тензометрическими датчиками и гальванометры осциллографа отмечают изменение количества фильтрата во времени. [c.160]

    Результаты наблюдений Льюиса [64] за появлением спонтанной турбулентности, проведенные капельным методом, представлены в табл. 1-11. Шервуд [931 делал визуальные наблюдения над почти 40 разными системами из несмешивающихся жидкостей. Опыты производились в трубках, в которые вводились водная и органическая фазы с растворенными тремя веществами, реагирующими между собой. Почти для всех систем наблюдалось три основных явления I) волны и колебания пограничной поверхности 2) прозрачные струи и мелкие капли, покидающие поверхность контакта 3) непрозрачные струи спонтанно образующейся эмульсии. В некоторых случаях капельки жидкости отделяются от поверхности контакта и двигаются вниз в водной фазе, а затем возвращаются, всплывая вверх. Эти явления констатировал Шервуд в системах, в которых растворение происходит чисто физическим путем, однако они происходят чаще в случае экзотермических реакций. Активность зависит от концентрации и чаще всего появляется при переходе из органической фазы в водную, реже при противоположном направлении, что согласуется с наблюдениями других авторов. На рис. 1-31 дана картина слоев у поверхности контакта для изобу- [c.60]

    Анализ полей скоростей, а также визуальные наблюдения спектров потока показывают следующее. [c.197]

    Эффективность описанного распределительного устройства была проверена экспериментально на модели узла изоляции натуральной величины (рис. 8.9). Во время опытов измерялись поля скоростей в сечениях 1—/ и 2—2, относительные расходы воздуха д = q/g p через отдельные щели кольцевой решетки и проводились визуальные наблюдения (по шелковинкам) направлений скоростей в сечениях О—О, 1—1 и 2—2. [c.216]


    Смотровые окна. Для визуального наблюдения за работой горелочных устройств, процессом горения топлива и состоянием внутренней поверхности футеровки камеры горения на фронтальной или боковой стенке печи предусматриваются смотровые окна. [c.254]

    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]

    Если в проектируемом сборнике предполагается хранение загрязненных мутных жидкостей, способных заморить штуцеры для установки мерных стекол, то визуальное наблюдение за уровнем и настройка автоматических регуляторов ведется через стекла, вмонтированные в корпус аппарата, — регарды. При работе с загрязненной и кристаллизующейся жидкостью иногда предусматривают промывку смотровых стекол и регард чистой жидкостью или конденсатом либо механическую прочистку стекол. [c.84]

    Одной из возможных причин подобных расхождений является субъективность визуальных наблюдений. Как показал Гольцикер , картпна поведения фонтанирующего слоя, зафиксированная на кинопленку, существенно зависит от частоты канров при съемке. — Прим. ред. [c.642]

    Визуальные наблюдения. Визуальные наблюдения за потоками в системах газ — жидкость и жидкость — жидкость производились на подкрашенных жидкостях при исследовании систем пар—жидкость применялась стеклянная, прозрачная насадка, что позволило производить наблюдения без применения красителя. [c.383]

    Перепад давления в двухфазных системах. Визуальные наблюдения и количественные измерения сопротивления двухфазных систем в насадочных колоннах позволили установить возникающие в насадке гидродинамические режимы и характерные переходные точки (рис. 194). [c.388]

    Для исследовапия характера движения жидкости в трехмерном пространстве наряду с другими методами используют способ визуального наблюдения за перемещением введенного в перемешиваемую жидкость ярко окрашенного шарика диаметром 5 мм плотность материала шарика равна плотности перемеит-ваемо11 среды. [c.278]

    У напорно-буферной системы узла формования поплавковые уровнемеры типа ротаметров устанавливают на буферных емкостях, а регулирующие (перепускные) клапаны — на возвратных линиях пз буферных емкостей. Напорные бачки для визуального наблюдения оборудованы зал1ерными стеклами. [c.147]

    Для лучшего понимания сказанного приведем такую аналогию. Допустим, перед нами очень много фотографий одного из участников футбольного матча, скажем, вратаря. Используя эти фотографии (или кинопленку, или, наконец, визуальное наблюдение), можно нанести на чертеж все точки футбольного поля, где во время матча в разные моменты застал вратаря объектив фотографа. Ясно, что наибольшее число отметок придется на участок поля, непосредственно примыкающий к воротам, — там вратарь бывает чаще, там больше поэтому вероятность его обнаружения. Полученное таким способом вратарное облако , конечно не будет образом самого вратаря, а будет характеризовать его движение по футбольному полю во время матча. Правда, в отличие от электрона, вратарь— макрообъект и его движение можно было бы представить и по-другому, начертив, к примеру, траекторию его перемещений и избежав, тем самым, введения вероятностных представлений. Для электрона же такой альтернативы нет, [c.35]

    Несьолько лет назад нами проводились иследования по изучению основных свойств эмульсии серная ки лота — углеводороды и выяснению их влияния на ре цию алкилирования изопарафинов олефинами. Опыты проводили на пилотной установхе в стеклянном толстостеннсм реакторе, позволявшем вести визуальное наблюдение за образованием и отстоем эмульсии. В дальнейшем результаты исследования проверяли на одной из промышленных установок сернокислотного алкилирования. Для работы использовали как чистые углеводороды, так и промышленные фракции. Тип эмульсии ( кислота в углеводородах или углеводороды в кислоте ) определяли измерением ее электропроводности. [c.74]

    Часть исследований с направляющими устройствами производилась также на модели круглого сечения при отношении площадей FjFa 16 на основании визуальных наблюдений при помощи щелковинок был выбран оптимальный угол установки направляющих лопаток д a 56°, при котором профиль скорости получался наиболее симметричным. Диаграммы полей скоростей (рис. 8.1) показывают, что при большом отношении площадей (FJFq = 16) одни направляющие лопатки или пластинки не могут обеспечить удовлетворительного распределения скоростей по сечению аппарата (см. рис. 8.1, б, д). Более равномерное распределение скоростей достигается при установке за направляющими лопатками одной плоской решетки ( р a 6, f = 0,44, см. рис. 8.1, е, е), а вполне удовлетворительное — при установке двух решеток ( pi = Spa = 4,5 / = 0,48, см. рис. 8.1, г, ж). [c.199]

    Образование газовых пузырей является наиболее поразительным свойством псевдоожиженного слоя с газообразным ожижающим агентом. Это явление легко обнаруживается при визуальном наблюдении и достаточно хорошо извест,но. Кроме особых случаев foHu будут рассмотрены позднее), при псевдоожижении газом всех зернистых материалов возникают пузыри, как и при кипении капельной жидкости. Интенсивность этого процесса возрастает с повышением скорости газа. При увеличении последней все большее числа частиц уносится из слоя, а по достижении предельной скорости витания (т. е. скорости уноса наиболее крупных частиц) полностью уносится весь слой. [c.122]

    По полученным распределениям скоростей, а также на основе визуальных наблюдений спектра потока с помощью щелковинок, можно установить следующее. При отсутствии распределительных решеток в рабочей камере аппарата получается очень неравномерное поле скоростей (.Иг( = 14- 15). Почти во всем сечении создается область отрицательных скоростей (обратных токов). Поступательное движение сосредоточено или в очень узкой полосе вблизи нижней стенки аппарата (вариант 1-1, табл. 9.1), или в несколько большей области вблизи верхней стенки аппарата (вариант П-1). Отклонение потока к нижней или верхней стопке рабочей камеры обусловлено тем направлением потока, которое он получает при выходе из колена или отвода газохода перед диффузором. Как было показано, при отсутствии в коленах и отводах направляющих лопаток поток на повороте получает направление от внутренней стенки к внешней. Если за этими фасонными частями нет достаточно длинных прямых участков, то отклонение потока сохраняется и после выхода tro из указанных частей газохода. Отсутствие направляющих лопаток в колене приводит к дополнительному сжатию потока (повышению его скорости) иа выходе из колепг . Поэтому в случае подвода потока к диффузору через колено без направляющих лопаток максимум скоростей в сечении рабочей камеры аппарата получается больше, >ем в случае подвода через плавный отвод. [c.224]

    Если свободная поверхнвсть слоя доступна для наблюдения, то можно получить дополнительную информацию. При не очень интенсивном барботаже газовых пузырей легко "наблюдать выход отдельных пузырей на поверхность слоя, а также измерить их частоту и размеры. Обычно для таких измерений необходима фото- или киносъемка, так как процесс протекает быстро и зафиксировать его с достаточной точностью визуально весьма трудно. При значительных скоростях газа невозможно различить выход отдельных пузырей и получить сколько-нибудь значительную количественную информацию. Качество визуальных наблюдений зависит от природы материала. На фото IV- особенно, четко видны полусферические вздутия на поверхности слоя порошкообразного катализатора в момент, предшествующий выходу пузыря из слоя Для образования пузырей можно ввести в минимально псевдоожиженный слой (или в слой со слабым барботажем пузырей) дополнительное количество газа через отдельное отверстие в основании слоя или внутри него. Фиксируя промежуток времени от ввода газа до выхода пузыря из слоя, легко определить среднюю скорость движения пузыря - . [c.123]

    Уравнение (VIII,34) позволяет но частоте появления пузырей оценить расширение слоя сверх значения, характерного для начала псевдоожижения, и, вероятно, с большей достоверностью, нежели визуальные наблюдения. [c.357]

    Визуальные наблюдения за характером движения твердых частиц и измерения распределения давления при истечении псевдоожиженной плотной фазы производили в плоском аппарату поперечным сечением 200 Х16 мм с горизонтальной щелью размерами 2 X 16 мм. К сожалению, условия опыта характерны лишь для истечения из малых отверстий. Геометрические размеры аппарата не позволяли вести опыт с достаточно пшрокой щелью, так как расход воздуха через нее составил бы слишком большую [c.577]

    Визуальные наблюдения за поведением потока твердых частиц в стеклянной трубе показали, что его характер весьма сложен и зависит от отношения расходов твердого материала и газа тп. Как показано на рис. ХУ1-2, при очень низких значениях этого отношения твердые частицы совершенно равнолгерно распределены в трубе. Отчетливо видно, что некоторые частицы при своем движении отскакивают от стенок трубы. [c.593]

    Теплоизоляция. Для правильной работы дефлегматора его необходимо тшательно защитить от потери тепла (теплоизолировать). Применение дефлегматоров без изоляции—довольно распространенная грубая ошибка, резко снижающая качество фракционной перегонки. Надежность теплоизоляции должна быть тем выше, чем при более высокой температуре кипят разделяемые жидкости. Проще всего обмотать рабочую часть в несколько слоев асбестовым шнуром, однако при этом становится невозможным визуальное наблюдение за происходящими в дефлегматоре процессами. Проста и удобна для изоляции съемная хмуфта из более широкой стеклянной трубки, закрепленная с помощью двух корковых пробок (рис. 74, в). Более надежную изоляцию обеспечивает вакуумная рубашка (рис. 74,г). Верхнюю часть дефлегматора, свободную от насадки, не изолируют. За счет некоторого охлаждения у стенок часть паров здесь конденсируется и стекает вниз, образуя флегму. [c.146]

    Опыты на моделях заключа ись в измерении скоростей потока и давлений в различных сечениях рабочей камеры как перед решеткой, так (глав ым образом) и за ней, а также в определении сопротивления участка сети от входа в аппарат до сечения за решеткой. Во многих случаях производились визуальные наблюдения спектра потока с И0М0ЩЬ 0 шелковинок, подвешенных 1 а нитяной сетке в проволочной раме. [c.160]

    Как показали визуальные наблюдения (рис. 7.18), в этом случае в рабочей камере аппарата действительно происходило сильрюе закручивание потока (рис. 7.18, а), которое сохранялось при установке в аппарате плоской (тонкостенной) решетки (рис. 7.18, б). Закручивание потока полностью устранялось при установке за плоской решеткой спрямляющего устройства (ячейковой решетки, рис. 7.18, в, г) или при размещении у входного отверстия рассекателя, например, в виде набора параллельных пластин (рис. 7.19). [c.183]

    Визуальные наблюдения за потоками в насадочных колоннах показали, что при небольших скоростях потоков газа (пара) и жидкости стекающая жидкость накапливается в точках соприкосногения элементов насадки, на нижних поверхностях элементов до образования капель. Капли, достигнув определенного размера, соприкасаются с ни- [c.383]


Смотреть страницы где упоминается термин Визуальные наблюдения: [c.213]    [c.153]    [c.383]    [c.325]    [c.27]    [c.205]    [c.213]    [c.20]    [c.380]    [c.313]   
Основы массопередачи (1962) -- [ c.349 , c.401 , c.493 ]




ПОИСК





Смотрите так же термины и статьи:

Аппарат для исследования растворимости газа с визуальным наблюдение

Визуальное наблюдение спектра

Визуальное наблюдение ультразвуковых полей

Визуальные наблюдения процессов тепло- и массообмена при помощи теневого аппарата

Кричевского и Циклиса для определения сжимаемости газов при с визуальным наблюдением сжимаемости

Приборы для визуальных наблюдений

Смирнов. Визуальные наблюдения в критической области

Установка с визуальным наблюдением для

Установка с визуальным наблюдением мениска

Фазовые с визуальным наблюдение

Флуоресценция аппаратура для визуального наблюдения



© 2025 chem21.info Реклама на сайте