Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репликаза

    Заверщение трансляции С-цистрона первыми рибосомами приводит к тому, что в системе появляются свободные молекулы белка оболочки. По мере трансляции этот белок накапливается и в будущем будет вовлечен в самосборку готовых вирусных частиц. Однако он оказался обладающим также и другой функцией он имеет сильное специфическое сродство к определенному участку MS2 РНК между С- и S-цистронами, включающему инициирующий кодон S-цистрона. Соответственно, он присоединяется к этому участку и репрессирует инициацию трансляции S-цистрона. Вероятно, репрессия происходит вследствие стабилизации лабильной вторичной структуры, показанной на рис. 11, белком оболочки фага и получающейся отсюда недоступности инициирующего кодона S-цистрона. Следовательно, через сравнительно короткое время после того, как трансляция S-цистрона была разрешена трансляцией предшествующего цистрона, происходит репрессия инициации трансляции S-цистрона вследствие накопления белкового продукта трансляции предшествующего цистрона. В этих условиях рибосомы, уже начавшие трансляцию, продолжают ее и в конце концов заканчивают синтез соответствующего количества молекул субъединиц синтетазы. Ограниченного количества этого белка достаточно, чтобы образовать активные молекулы РНК-репликазы, которые начнут репликацию MS2 РНК. В то же время репрессия дальнейшего синтеза этого белка позволяет избежать ненужной суперпродукции фермента. Белок оболочки фага, являющийся репрессором S-цистрона, [c.235]


    Кодирующие эффекты сначала обнаруживаются в том, что цепь м-РНК узнает частицы т-РНК. Несомненно, что если этот эффект имеет место, сборка агрегата протекает легче. Как только синтезированный полипептид случайно окажется обладающим каталитическими свойствами РНК — репликазы, начнется автокатализ образования РНК и соответственно синтез определенного бел- [c.385]

    Р. РНК (синтез РНК на РНК-матрице) изучена меньше. Она осуществляется только у нек-рых вирусов (напр., у вирусов полиомиелита и бешенства). Фермент, катализирующий этот процесс,-РНК-зависимая РНК-полимераза (его называют также РНК-репликазой или РНК-синтетазой). Известно неск. типов Р. РНК 1) вирусы, содержащие матричные РНК, или мРНК [т. наз. (+)РНК], в результате Р. образуют комплементарную ей цепь [( —)РНК], не являющуюся [c.253]

    Репликаза фага Qp — высокоспецифичный фермент из природных РНК он использует в качестве матрицы только собственный геном, т. е. РНК фага Qp и некоторые родственные молекулы. Однако прн наличии затравки фермент может копировать любую РНК таким образом, специфичность проявляется на стадии инициации. Любопытно, что избирательность фермента по отношению к. матрице в значительной степени определяется входящи.ми в его состав клеточными белками белок S1 и хозяйский фактор требуются при использовании в качестве матрицы (—)нити РНК фага Qp, но эти белки ненужны, когда в рати матрицы выступает, например, (—)нить этой РНК. [c.319]

    Следует отметить, что хроматография в системе ХОФ-5 является мягким способом фракционирования и очистки, по крайней мере в случае РНК. Известно, например, что нативная РНК фага MS-2, кодируюш,ая только три белка (оболочки фага, репликазу и белок А) в опытах in vitro ведет инициацию их синтеза в пропорции 70 25 5. После мягкой тепловой денатурации РНК эти синтезы инициируются уже с одинаковой скоростью, что можно объяснить утратой специфической третичной организации молекулы фаговой РНК. Оказалось, что после очистки в хроматографической системе ХОФ-5 РНК фага MS-2 полностью сохраняла нативные пропорции инициации указанныз выше синтезов. То же самое было показано и для РНК фага QP [ ampbell et al., 1980]. [c.173]

    Ферментные системы синтеза ДНК у про- и эукариот до конца не выяснены. По имеющимся данным, в репликации ДНК, включающей узнавание точки начала процесса, расплетение родительских цепей ДНК в репликационной вилке, инициацию биосинтеза дочерних цепей и дальнейшую их элонгацию и, наконец, окончание (терминация) процесса, участвует более 40 ферментов и белковых факторов, объединенных в единую ДИК-репликазиую систему, называемую реплисомой. [c.479]

    Репликаза фага Q исследована довольно детально. Для образования полного репликазного комплекса кроме субъединицы, детерминируемой геномом фага, нужны еще три бактериальных белка. Это рибосомный белок S1 и факторы элонгации EF-Tu и EF-Ts. Все эти три белка обычно участвуют в трансляции мРНК. Однако фаг использует их способность связываться с РНК совсем для другой цели. [c.244]


    Репликация одноцепочечного фага должна протекать в две стадии. Сначала на содержащейся в фаговой частице плюс-цепн образуется. комплементарная минус-цепь. Для инициации этой стадии необходимы еще один бактериальный белок, а именно фактор HF , и GTP. Образующиеся минус-цепи не остаются связанными с плюс-цепями. Они, по-внди-мому, освобождаются от репликазы в одноцепочечной форме и складываются, образуя высокоупорядоченные молекулы с большим числом шпилек. (Как и в случае плюс-цепей РНК фага MS2, показанных на рис. 15 19.) Далее минус-цепи копируются (фактор ИР для этого не нужен), образуя большое число новых плюс-цепей, которые включаются в готовые фаговые частицы. [c.245]

    Репликаза фага Q способна in vitro синтезировать цепи, полностью комплементарные как плюс-, так и минус-молекулам вирусной РНК. Система, однако, специфична для вирусной РНК и не может копировать никаких других полинуклеотидов. Возможно, что для инициации процесса репликации нужно, чтобы на З -конце имелись определенные последовательности. В пробирке репликация протекает с ошибками, такими, в частности, как преждевременная терминация цепи и неправильное спаривание оснований. В результате происходит образование мутантных форм РНК, что дает возможность получать молекулы РНК, размеры которой будут значительно меньше, чем у вирусной РНК, и которые будут при этом легко реплицироваться репликазной системой фага Q . Была установлена нуклеотидная последовательность одного из таких фрагментов, включающего всего лишь 114 нуклеотидов . [c.245]

    Хорошим примером полицистронной мРНК является РНК малого РНК-содержащего бактериального вируса (фага) MS2. Фаг MS2 — сферический он имеет диаметр 2,5 нм и молекулярную массу 3,6 10 дальтон. Фаг построен из 180 субъединиц белка оболочки с молекулярной массой 14700 дальтон каждая, одной молекулы так называемого А-белка с молекулярной массой 38000 дальтон и одной молекулы РНК с молекулярной массой 10 дальтон. После попадания фага в клетку Е. соИ (а также в бесклеточной системе трансляции) эта РНК служит матрицей для белка оболочки, А-белка и субъединицы РНК-репликазы с молекулярной массой 62000 дальтон, которая в состав фага не входит. Схема расположения соответствующих цистронов вдоль цепи этой мРНК дана на рис. 6. Цепь начинается с G, имеющего трифосфат на своем 5 -гидроксиле. Далее следует длинная некодирующая нуклеотидная последовательность. Общая длина 5 -концевой некодирующей последовательности 129 остатков в ней встречаются триплеты AUG и GUG, которые, однако, не являются инициаторными. Первый инициаторный кодон, GUG, начинает кодирующую последовательность А-белка (А-цистрон). А-цистрон имеет длину 1179 остатков и заканчивается терминаторным кодоном UAG. Затем идет некодирующая вставка длиной 26 остатков. Следующая кодирующая последовательность начинается с AUG и имеет длину 390 остатков это —цистрон белка оболочки (С-цистрон). Он оканчивается терминаторным кодоном UAA, и за ним непосредственно следует второй терминаторный кодон UAG. Последовательность длиной 36 остатков отделяет С-цистрон от S-цистрона, кодирующего субъединицу РНК-синте-тазы. S-цистрон начинается с AUG, имеет длину 1635 остатков и заканчивается UAG. За ним через один остаток (т. е. не в фазе) имеется еще один терминаторный триплет UGA. З -концевая некодирующая последовательность имеет общую длину 174 остатка и заканчивается аденозином со свободной г/мс-гликольной группиров- [c.20]

    РНК бактериофага MS2 содержит три цистрона, разделенных нетранслируемыми последовательностями, и один цистрон, перекрывающийся с двумя другими (см. раздел А. II. 4 и рис. 6). Ближе всего к 5 -концу этой лолицистронной мРНК расположен А-цистрон (1182 нуклеотидных остатка, включая терминирующий кодон), кодирующий А-белок, или белок созревания (393 аминокислотных остатка). Далее по направлению к З -концу следует С-цистрон (393 нуклеотидных остатка, включая терминирующий кодон UAA), кодирующий белок оболочки фага (129 аминокислотных остатков). Ближе всего к З -концу располагается S-цистрон (1638 нуклеотидных остатков, включая терминирующий кодон UAG), кодирующий субъединицу РНК-репликазы (544 аминокислотных остатка). L-цистрон (228 нуклеотидных остатков вместе с терминирующим кодоном UAA), кодирующий маленький белок лизиса (75 аминокислотных остатков), перекрывает не в фазе конец С-цистрона, нетранслируемую последовательность и начало S-цистрона. (Следует заметить, что при синтезе белка оболочки и субъединицы РНК-репликазы N-концевой метионин отщепляется, и поэтому количество аминокислотных остатков в готовом белке на один меньше, чем количество значащих кодонов матрицы.) [c.234]

    В соответствии с вышесказанным трансляция интактной MS2 РНК в бесклеточных системах, а также, по-видимому, и in vivo начинается с инициации синтеза белка оболочки. Трансляция С-цистрона приводит к тому, что рибосомы движутся вдоль него по направлению к S-цистрону и расплетают структуру РНК по мере своего продвижения. Это приводит к открыванию инициирующего района цистрона S. Таким образом, еще до окончания трансляции С-цистрона первой рибосомой и синтеза первой молекулы белка оболочки инициирующий район S-цистрона делается доступным, и происходит инициация синтеза субъединицы РНК-репликазы. [c.235]


    Благодаря этой особенности, а также благодаря тому, что репликаза Qp в присутствии хозяйского фактора распознает как (+)нить, так и (—)нить фаговой РНК, добавление этой РНК к ферменту запускает множественные повторные полные циклы репликации вирусного генома на ( )матрицах синтезируются (—)нити, которые в свою очередь используются для синтеза (—)РНК- Соотношение между синтезом (-г) и (—)цепей in vitro будет определугться концентрацией хозяйского фактора , который, как известно, нужен для образования (—)цепей при его недостатке предпочтительно идет синтез (—)нитей. Очищенная система, состоящая из репликазы Qp, некоторого количества хозяйского фактора , нуклеозидтрифосфатов и солей, способна синтезировать инфекционную фаговую РНК в количествах, многократно превышающих количество фаговой РНК, первоначально внесенное в систему в качестве матрицы. [c.320]

    Тремя главными матричными процессами, присущими всем без исключения живым организмам, являются репликация ДНК, транскрипция и трансляция. Репликация ДНК происходит с участием ферментов ДНК-полимераз. Роль матриц играют разделенные цепи двунитевой материнской ДНК. Субстратами являются дезоксирибонуклеозид-5 -трифосфаты. Транскрипция осуществляется с помощью ферментов РНК-полимераз. Матрицей служит одна из нитей двунитевой ДНК, а субстратами — рибонуклеозид-5 -трифосфаты. Трансляция происходит на рибосомах с участием информационной РНК (мРНК) в качестве матрицы и аминоз1Ц1л-тРНК в качестве субстратов. Кроме того, при заражении клеток вирусами, у которых наследственная информация содержится в молекулах вирусных РНК, в клетках начинается запрограммированный этими РНК синтез ферментов, называемых обычно РНК-репликазами, которые катализируют биосинтез РНК, используя в качестве матриц молекулы РНК. Некоторые вирусы, вызывающие злокачественные новообразования, содержат ферменты, катализирующие обратную транскрипцию — синтез ДНК с использованием в качестве матриц молекул РНК. Эти ферменты часто называют обратными транскриптазами или ревертазами. Более строгие названия двух последних групп ферментов соответственно — РНК-зависимая РНК-полимераза и РНК-зависимая ДНК полимераза. [c.174]

    РНК-репликаза, вьщеленная из клеток Е.соН, зараженных вирусом Qp, катализирует образование РНК, комплементарной вирусной РНК, из рибонуклеозид-5 -трифосфатов. Уравнеш1е этой реакции аналогично уравнению реакции, катализируемой ДНК-зависимой РНК-полиме-разой  [c.921]

    Синтез новой цепи РНК происходит в направлении 5 -> 3. РНК-репликаза не может использовать в качестве матрицы ДНК для этой цели ей необходима РНК. В отличие от ДНК-и РНК-полимераз РНК-репликазы обладают специфичностью к матрице. Так, РНК-репликаза фага Q 3 способна использовать в качестве матрицы только РНК этого вируса, а РНК клетки-хозя-ина этим ферментом не реплицируются. Это обстоятельство объясняет, почему РНК-содержащие вирусы имеют преимущество при репликации своей РНК в клетке-хозяине, содержащей большое число РНК других видов. [c.921]

    Таким образом, очищенная РНК-репликаза вируса QP может осуществлять синтез новых биологически активных молекул QP-PHK. Используя в качестве матрицы инфекционную ( + )-цепь РНК вируса, очищенная репликаза способна синтезировать комплементарную (— )-цепь, которая затем в присутствии того же фермента может служить матрицей для образования полностью инфекционной Q р-РНК, идентичной с исходной (-Ь)-нитью. Из этого следует, что центральная догма молекулярной генетики [c.921]

    В бактериальных клетках, зараженных некоторыми РНК-содержащими вирусами, были найдены РНК-зависимые РНК-репликазы. Они обладают специфичностью по отношению к вирусной РНК-матрице. Вьщеленная из бактерий полинуклеотидфосфорилаза может обратимо синтезировать РНК-подобные полимеры из рибонуклеозид-5 -дифосфатов. Хотя этот фермент способен добавлять рибонуклеотиды к З -гидроксильному концу полимера и удалять их оттуда, обычно он выполняет функцию деградации РНК. [c.923]

    На основании приведенных нами результатов можно считать, что клетки, зараженные РНК-вирусами, продуцируют РНК-зави-симую РНК-полимеразу. Этот фермент называют также РНК-син-тетазой или РНК-репликазой [31]. Она была обнаружена в различных типах клеток, зараженных РНК-содержащими вирусами бактерий [31, 142—146, 220], растений [201, 210] и животных [139-141, 148]. [c.248]


Смотреть страницы где упоминается термин Репликаза: [c.320]    [c.320]    [c.244]    [c.244]    [c.625]    [c.702]    [c.236]    [c.319]    [c.320]    [c.201]    [c.495]    [c.231]    [c.113]    [c.196]    [c.197]    [c.197]    [c.169]    [c.299]    [c.921]    [c.925]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.319 , c.320 ]

Молекулярная биология (1990) -- [ c.319 , c.320 ]

Основы биологической химии (1970) -- [ c.515 ]

Химия и биология вирусов (1972) -- [ c.238 ]

Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.119 , c.204 ]




ПОИСК







© 2025 chem21.info Реклама на сайте