Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция скорость внешнего переноса, уравнение

    Кинетика адсорбции. Скорость процесса адсорбции зависит от условий транспорта адсорбируемого вещества и поверхности (внешний перенос) и переноса его внутри зерен адсорбента (внутренний перенос). Скорость внешнего переноса определяется гидродинамической обстановкой процесса, а внутреннего — структурой адсорбента и физико-химическими свойствами системы. Гидродинамическая обстановка зависит от условий проведения процесса. Процессы адсорбции проводятся в основном двумя способами — в плотном и псевдоожиженном слоях адсорбента. В первом случае поток в пространстве между частицами приближается по структуре к модели поршневого движения, во втором — к модели идеального смешения. Кинетика внешнего переноса описывается уравнением  [c.507]


    Рассмотрим в качестве примера решение задачи диффузионного переноса в частице сферической формы с учетом скорости массообмена во внешней области. Такие задачи встречаются при рассмотрении массопереноса в движущуюся каплю, в которой циркуляционное движение заторможено, а также при нахождении скорости адсорбции, определяемой внешним массообменом и внутренней диффузией в порах адсорбента. В этом случае необходимо решать уравнение (5.3.2.3) в области г < 1. В безразмерных переменных задача формулируется следующим образом  [c.287]

    Для получения кинетического уравнения предполагалось, что справедлив послойный механизм отработки адсорбента и что скорость адсорбции определяется внутридиффузионным переносом. Тогда для некоторого момента времени т, когда фронт адсорбции переместился от внешней поверхности зерна на глубину х, количество вещества йМ, адсорбированного за время т, можно выразить следующими уравнениями  [c.121]

    Весьма важные для химической технологии массообменные процессы происходят в системах с капельными жидкостями. Это процессы растворения и экстрагирования, кристаллизации, жидкостной адсорбции, для которых значения критериев Прандтля оказываются существенно больше единицы. При этом конвективный перенос целевого компонента становится сравнимым с диффузионным на таких малых расстояниях от твердой поверхности, на которых характер течения иотока капельной жидкости практически еще полностью определяется только силами вязкого трения, а толщины гидродинамического и диффузионного пограничных слоев становятся существенно неодинаковыми. Для капельных жидкостей, имеющих величины диффузионных критериев Прандтля порядка 10 , диффузионный пограничный слой имеет приведенную толщину, значительно меньшую, чем гидродинамический пограничный слой, что в значительной мере упрощает анализ процесса внешнего массообмена, поскольку при решении уравнения конвективно-диффузион-ного переноса компонента (1.21) в таком случае возможно воспользоваться приближенными решениями (1.7) для компонент скорости хюх и ту, справедливыми для малых расстояний от стенки. Кроме того, при анализе массообмена твердой поверхности с потоками капельных жидкостей обычно предполагается пренебрежимо малое значение стефановского потока. [c.33]


    Динамика адсорбции растворенных веществ из потока зависит не только от скорости массопереноса, но также и от вида изотермы адсорбции. Для того чтобы упростить анализ зависимости динамики адсорбции от характера изотермы адсорбции, рассмотрим процесс при условии, что скорость переноса вещества в растворе к внешней поверхности зерен адсорбента и скорость внутреннего массопереноса настолько велики, что динамика адсорбции определяется только материальным балансом переноса вещества и видом изотермы адсорбционного равновесия Тогда процесс адсорбции из потока может быть описан уравнениями  [c.222]

    Используя уравнение для скорости процесса адсорбции (2.2), и считая, что общее сопротивление складывается из сопротивлений внешнего и внутреннего переносов (продольным перемешиванием пренебрегали), т. е. [c.39]

    Найдем коэффициент массопередачи при этой скорости газа. Десорбция проводится при давлении, в 10 раз меньшем давления адсорбции. Поэтому плотность газа при десорбции можно считать в десять раз меньшей, а коэффициент диффузии — в десять раз большим, чем при адсорбции. Следовательно, имеем Ру = = 0,08263 кг/м , Dy = 0,735 mV . Расчет внутреннего коэффициента массоотдачи по уравнениям (III.83) и (III.85) дает Рх = Рп = 0,749 см/с. Определив из уравнений (111.82) и (III.91) внешний коэффициент массоотдачи фу = 7,73 см/с) и поправку для учета продольного перемешивания (Рдрод = 2,98 см/с), находим коэффициент массопередачи при скорости газа 0,213 м/с (/Су = 0,556 см/с). Следовательно, при 1/7 = 0,75 общее число единиц переноса для всего слоя равно  [c.73]

    Однако в кажущемся противоречии с этим механизмом действия ПАОВ пересечение i, -кривых восстановления аниона ЗгОв в растворах камфары и оксигомоадамантана наблюдается при потенциале нулевого заряда, отвечающем чистой поверхности ртути, а не покрытой адсорбированным монослоем ПАОВ (см. рис. 5.16). Этот результат можно объяснить туннелированием электрона к реагирующей частице через поры в адсорбционном слое, которые заполнены молекулами воды, причем реагирующая частица в поры не проникает, а находится против них с внешней стороны монослоя. В этом случае перенос электрона не требует затраты работы, связанной с изменением электрического поля у электрода за счет адсорбции дипольных молекул ПАОВ, и ток не чувствителен к сдвигу потенциала нулевого заряда. В рамках этого механизма находит объяснение и вытекающая из уравнения (5.44) зависимость скорости разряда при почти полном заполнении поверхности электрода ПАОВ от (I—0), т. е. от числа пор в адсорбционном слое. В самом деле, с увеличением концентрации ПАОВ в растворе число пор сокращается и пропорционально уменьшается ток, обусловленный переносом через них электронов. [c.185]


Справочник инженера - химика том первый (1969) -- [ c.543 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость адсорбции

Уравнение адсорбции

Уравнение скорости



© 2025 chem21.info Реклама на сайте