Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ньютона Гаусса Рафсона метод

    Матричные методы расчета колонн многокомпонетной ректификации. Выделение этой группы методов возможно и несовсем правомерно, т,ак как, например, при использовании релаксационных методов задача также может быть сведена к решению систем линейных алгебраических уравнений методами матричной алгебры [227—250]. Впервые матричные методы в расчетах процессов ректифик,ации были использованы в работах [227, 228, 229], при этом системы уравнений, описывающие распределение температур, составов и величин потоков пара и жидкости по ступеням (разделения, решались независимо друг от друга методом Гаусса [238—243]. Матричные методы р,асче-та в свою очередь. различаются по двум основным признакам— методу решения систем уравнений математического описания, записанных б матричной форме, и используемым методом снижения размерности реш,аемой системы уравнений. Так был предложен метод сведения нелинейной системы уравнений к линейной, что вполне возможно при использовании метода Тилле—Гедеса для расчета распределения составов и метода Ньютона—Рафсона для определения температур на ступенях разделения [239]. Следует отметить, что реал.из,ац ия матричных методов, особенно в сочетании с методом Ньютона—Рафсона, требует использования ЭВМ с колоссальным объемом оперативных запоминающих устройств (необходимость хранения матриц коэффициентов систем уравнений и матриц величия частных производных от системы уравнений м,атематического описания по всем итерируемым переменным). Некоторое сокращение-размерности системы уравнений математического описания возможно лишь для случая расчета процессов ректификации идеальных смесей [228], но введение учета неидеальности смеси приводит к увеличению размерности задачи до первоначальной. Предлагалось также в сочетании с матричным методом расчета использовать концепцию реальной ступени разделения при введении заданной постоянной величины к. п. д. Мерфри [230]. Позднее матричные методы получили развитие в целом ряде работ [230—245]. В связи с широким использованием в расчетах процессов химической технологии методов квазилинеаризации эти методы нашли широкое применение и в расчетах процессов ректификации многокомпонентных смесей [241, 238, 239]. Так, например, метод квазилинеаризации позволяет существенно улучшить характеристики сходимости матричных методов расчета [237]. В пос- [c.56]


    В большинство общепринятых алгоритмов метода наименьших квадратов для расчета констант устойчивости входит уравнение (5.9) алгоритмы основаны на методах Ньютона — Гаусса — Рафсона. Эти методы подразделяются на две группы в зависимости от способа, которым обеспечивается уменьшение суммы квадратов 5 на каждой итерации. В первой группе масштабная корректировка или оптимизация поправочного вектора выполняется таким образом, чтобы обеспечить максимальное уменьшение S на каждой итерации. Это безусловно обеспечивает сходимость. [c.91]

    Все остальные методы локальны и уточняют положение какого-то минимума, который иногда может не быть глобальным. Их успешно применяют лишь в случае, когда известно достаточно хорошее приближение к структуре исследуемой молекулы. Это методы поочередного уточнения параметров, наибыстрейшего спуска и др. Наиболее распространен среди них метод минимизации функционала (6.15) по схемам Ньютона—Гаусса и Ньютона—Рафсона. При этом после разложения в ряд Тейлора выражения (6.15) для 8М(з) и пренебрежения всеми членами, начиная с квадратичного, возникает система линейных уравнений относительно искомых параметров. Эту систему решают известными методами, что позволяет, применяя итерационную процедуру, уточнять значения структурных параметров. Достоинством данного метода наряду с уточнением геометрических параметров является возможность оценить величину случайной ошибки при их определении. [c.150]

    Уравнение (5.2.16) представляет собой алгоритм метода Гаусса (Гаусса — Ньютона, Ньютона — Рафсона) для решения задачи о наименьших квадратах в нелинейном случае. Очевидно, что гессиан в уравнении (5.2.13) заменен аппроксимирующим произведением двух. матриц, составленных из первых производных, и что век- [c.159]

    Другой путь для общего случая решения состоит в совместном решении системы из 2п нелинейных уравнений. Максвейн и Дурбин [31 ] провели такое решение с использованием метода Ньютона — Рафсона в сочетании с решением матриц по способу Гаусса. [c.183]

    LEAST. Следующим усовершенствованием была программа LEAST [31], включающая минимизацию функции методами Гаусса — Ньютона и Ньютона — Рафсона. В последнем случае принимаются во внимание члены второго порядка ряда Тейлора (см. разд. 5.3). Минимизируемой функцией является сумма квадратов отклонений во всех трех уравнениях материального баланса по общим концентрациям иона водорода, металла и лиганда. Это позволяет точно вычислять производные, в то время как в ранее обсуждавшихся программах используются приближенные разности. При вычислениях концентрации свободного металла и свободного лиганда рассматривают как параметры, подлежащие оценке в каждой точке измерений наряду с константами устойчивости [31]. Тем самым программа отличается от большинства других, в которых указанные величины находят одновременным решением уравнений материального баланса по металлу и лиганду, используя значения констант устойчивости на данной итерации. [c.100]



Равновесия в растворах (1983) -- [ c.91 , c.93 , c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Гаусса

Метод Ньютона-Рафсона

Ньютон

Ньютона Рафсона

Ньютона метод



© 2025 chem21.info Реклама на сайте