Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индукция в органических молекулах

    Эти вещества мы можем рассматривать как окислители, но с той же оговоркой по сравнению с неорганическими реакциями. Отличие заключается в том, что окисление и восстановление в органической молекуле относятся к определенному атому углерода, вступившему во взаимодействие, а не ко всей молекуле целиком, хотя явление химической индукции несомненно скажется на свойствах остальных атомов. Так, например, реакцию металепсии, т. е. непосредственного соединения углеводорода с галогеном, можно квалифицировать как окисление углеродного атома  [c.452]


    Диамагнетизм органических соединений. Диамагнетизм является свойством всех органических молекул, обусловленным индукцией в атомах и молекулах под влиянием внешнего магнитного поля магнитных моментов, противоположных полю (и независящих от температуры). Молекулярная диамагнитная восприимчивость определяется указанным выше образом при помощи весов Гюи и обозначается знаком минус. [c.132]

    Диамагнетизм органических соединений. Диамагнетизм является свойством всех органических молекул, обусловленным индукцией в атомах и молекулах нод влиянием внешнего магнитного поля магнитных моментов, противоположных нолю (и независящих от температуры). Молекулярная диамагнитная восприимчивость [c.132]

    Аналогичным образом три-( -аланин) кобальт (П1), три-( -аланин) хром (П1) существуют в О (1(14) и Ь ййй) формах. Для оптически деятельных органических соединений, в меньшей мере для оптически активных комплексов наблюдается следующее явление. Оптически активные молекулы оказывают на близлежащие молекулы влияние, проявляющееся в том, что эти последние также становятся асимметричными. Например, вращение а-бром- -камфор я сульфоната цинка сильно увеличивается в присутствии о-фенантролина и а, а -дипиридила. Природа такого рода влияния, названного асимметричной индукцией, не всегда ясна. По-видимому, здесь имеет место образование некоторых [Промежуточных. соединений. [c.65]

    Монография посвящена одному из важнейших направлений физической органической химии — исследованию взаимного влияния непосредственно ие связанных атомов, Наиболее универсальным полярным взаимодействием, в значительной степени определяющим химическое поведение и физические свойства молекул, является индуктивный эффект. В книге дано количественное описание индукции в рамках формального подхода, электростатических теорий и представлений о передаче эффекта по цепи атомов. [c.207]

    Простые и характерные примеры сильного влияния строения на поведение атомов в одинаковых связях, но разных молекулах можно найти в данных по скорости изотопного обмена водорода. Эти примеры интересны еще и тем, что в них решающую роль играет не смещение электронных оболочек под влиянием соседних атомов и групп (эффекты индукции и сопряжения), которые преимущественно изучаются в современной теории органической химии, а качественные различия, связанные с участием электронов этих оболочек в образовании других валентных связей. [c.82]

    Оксидазы со смешанной функцией катализируют введение одного атома молекулы кислорода в органическую молекулу RH с образованием окисленного продукта ROH. Второй атом кислорода восстанавливается до воды. Второй субстрат [кофер-мент, обычно NAD(P)H] используется при этом в качестве донора электронов. Вся система представляет собой небольшую электронтранспортную цепь, включающую флавопротеин и цитохром Р450, который принимает электроны от восстановленного флавина в две одноэлектронные стадии и передает эти электроны на молекулярный кислород. Субстрат RH в ходе реакции, по-видимому, связывается с цитохромом Р450. Возможный механизм этой реакции приведен на рис. 5.13. Характерно, что такое гидроксилирование протекает с сохранением конфигурации. Примерами реакций, катализируемых оксидазами со смешанной функцией, могут служить гидроксилирование стероидов в мик-росомах печени, а также гидроксилирование лекарственных препаратов (детоксикация). Индукция цитохрома Р450 происходит под влиянием многих чужеродных органических соединений. [c.181]


    В статистической теории масс-спектра [2] исходят из того, что в первичном акте ионизации молекулы при электронном ударе образуется молекулярный ион, который некоторое время существует как целое, причем энергия возбуждения статистически распределяется по его внутренним степеням свободы. Затем этот молекулярный ион но законам мономолекулярного распада диссоциирует, образуя различные первичные осколочные ионы, которые в свою очередь могут претерпевать дальнейший распад также по мономолекулярному закону. Константы скоростей реакций таких распадов определяются плотностью энергетических уровней у соответствующих переходных состояний. Влияние замещающих функциональных грунн на эту плотность должно быть аналогично действию этих заместителей на переходное состояние в обычных реакциях органических молекул, хотя эти состояния могут отличаться от ионных как энергетическими уровнями, так и конфигурацией атомов в них. Объяснению кшетических явлений посвящено большое число исследований в современной физико-органической химии [3], которая оперирует понятиями поляризуемости, сверхсопряжения, резонанса, индукции и т. д. [c.349]

    При биосинтетических реакциях в сложной цепи последовательных этапов синтеза органических молекул представлены отдельные фотохимические стадии, т. е. химические реакции, в норме протекающие только под действием света. Например, выращенные в темноте растения не обладают характерной для них зеленой окраской. В них не синтезируется хлорофилл. Большинство стадий биосинтеза хлорофилла не нуждается в свете, однако одна из заключительных стадий — превращение прото-хлорофиллида в хлорофиллид — представляет собой фотохимическую реакцию. Сходным образом провитамины D, накапливаемые без участия света, превращаются в витамин фотохимическим путем. Характерно, что в реакциях этого типа акцептором биологически активного света является сам предшественник пигмента или витамина. Известны, однако, и такие биосинтетические реакции, в которых свет поглощается другими хромофорами, например, флавинами или цитохромами, как в случае биосинтеза каротиноидов. При этом биосинтез пигмента стимулируется косвенным образом через активацию соответствующих ферментных систем (индукция синтеза специфических белков). [c.38]

    Дальнейшие доказательства вероятности пространственных представлений о карбамидаых комплексах хорошо согласуются с данными Шленка [25] при сравнении экспериментальных и теоретических значений плотности комплексов. Известны процессы адсорбции и перегонки, применяемые для разделения молекул по классам и размерам. Разделение же их при помощи комплексообразования основано на различии в пространственном строении молекул с учетом их размера и класса. Автор 25] разделил все комплексы на две группы одна группа реагирует легко, а другая образует комплекс благодаря индукции, т. е. при помощи более стабильных органических веществ и деформации кристаллической решетки. Это явление названо индукцией. [c.10]

    В органических соединениях, и рассчитать дипольные моменты с помощью суммирова И1я векторов этих долей не всегда дают хорошие результаты ввиду того, что их величины зависят от других соседних групп в молекуле, которые путем индукции изменяют доли окружающих дипольных моментов. [c.32]

    Конечно, совсем по-иному должно обстоять дело с конститутивными ферментами, разлагающими глюкозу. Эта ферментная система работает очень интенсивно, и концентрация ферментов должна здесь постоянно поддерживаться на очень высоком уровне. Тем не менее она не бывает слишком высокой. Возможности регуляции здесь следующие. Во-первых, индуктор и корепрессор могут быть родственны друг другу, т. е. либо индуктор возникает из корепрессора (или наоборот), либо индуктор и корепрессор образуются одновременно, на одной предшествующей стадии. Во-вторых, между индуктором и корепрессором может устанавливаться постоянное количественное соотношение (нечто подобное известно в органической химии), которое как раз таково, чтобы отдача информации опероном все время держалась на постоянном (высоком) уровне. Однако все это, собственно говоря, домыслы, лишенные экспериментального подтверждения. Возможно, в действительности все выглядит совершенно иначе. Но одно кажется совершенно ясным наше разделение ферментов на регулируемые и нерегулируемые (конститутивные) не вполне правильно. Лучше было бы говорить о ферментах, концентрация которых стабильно поддерживается на каком-то постоянном, весьма низком (нанример, ферменты биосинтеза коферментов) или высоком уровне (например, ферменты разложения глюкозы), и о ферментах, концентрация которых может сильно варьировать, т. е. быть очень высокой или нулевой в зависимости от требований (синтез аминокислот — регуляция посредством репрессии распад лактозы — регуляция посредством индукции). Поскольку нам важно, чтобы читатель хорошо усвоил принцип регуляции, попробуем кратко резюмировать все то, что мы рассказали. Итак, регуляция осуществляется посредством репрессоров, имеющих двойную (аллостерия) специфичность во-нервых, в отношении генов-операторов, находящихся в геноме, и, во-вторых, в отношении определенных малых молекул (корепрес-соров или индукторов), находящихся в цитоплазме. К. Брэш в своей книге Классическая и молекулярная генетика так хорошо описал все эти механизмы, что лучше всего привести здесь его собственные слова  [c.287]


    При реакциях (особенно в растворах), в которые вступает молекула, состоящая минимум из двух атомов с различным сродством к электронам (в данном случае углерод и галоид), разная склонность к принятию отрицательного заряда предопределяет, какой из участвующих в данной связи атомов приобретает положительный, а какой — отрицательный характер. Если вблизи подобной полярной молекулы оказывается посторонняя молекула, то эта полярность может быть еще более усилена путем индукции. При этом величина индуцированной полярности определяется более или менее легко протекающим сдвигом электронов по направлению к тому или другому ядру, т. е. поляризуемостью молекулы [3]. Этот сдвиг заряда в предельном случае может дойти до распада на ионы. Между двумя крайними состояниями — ионизацией и атомной связью с незначительной ионностью — можно представить себе все переходные состояния. Существование переходных состояний зависит от характера галоида, структуры органического соединения и внешних условий (например, применение растворителя с высокой диэлектрической постоянной). Крайние случаи реализуются, по-видимому, сравнительно редко, или требуют для своего осуществления подходящих катализаторов. Напротив, часто протекают реакции, при которых ионы как таковые не образуются, а существуют в скрытом виде (xovTttd ). Согласно Меервейну [21], в этом случае говорят о криптоиоиных реакциях. [c.149]


Смотреть страницы где упоминается термин Индукция в органических молекулах: [c.108]    [c.167]    [c.167]   
Химия (1986) -- [ c.449 ]

Химия (1979) -- [ c.465 ]

Химия (1975) -- [ c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Органические молекулы



© 2025 chem21.info Реклама на сайте