Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тотипотентность

    МОРФОГЕНЕЗ В КАЛЛУСНЫХ ТКАНЯХ КАК ПРОЯВЛЕНИЕ ТОТИПОТЕНТНОСТИ РАСТИТЕЛЬНОЙ КЛЕТКИ [c.172]

    Вторичная дифференцировка каллусной клетки может завершиться образованием в каллусной ткани отдельных дифференцированных клеток. Они имеют определенное строение и выполняют специфические функции. Примером служит образование эпибла-стов — клеток, в которых запасаются вторичные метаболиты. Это наиболее простой тип дифференцировки каллусной клетки. Более сложная гистологическая дифференцировка завершается образованием в каллусе различных тканей млечников, волокон, трихом, элементов ксилемы (трахеи и трахеиды) и флоэмы (ситовидные трубки и клетки-спутницы). К самым сложным видам вторичной дифференцировки относятся органогенез — образование органов и соматический эмбриогенез — образование из соматических клеток эмбриоидов, биполярных зародышеподобных структур. Все эти типы дифференцировки возможны только благодаря тотипотентности любая растительная клетка содержит полный набор генов, характерный для того организма, из которого она была вьщелена. Потенциальные возможности всех клеток этого растения одинаковы каждая из них в определенных условиях может дать начало целому организму. Однако выяснено, что реально детерминируется только одна из 400—1000 клеток, что, вероятно, связано с физиологическим состоянием клетки, с ее компетентностью. Так, у эксплантов стеблевого происхождения компетентны к действию экзогенных фитогормонов и, следовательно, способны к морфогенезу только клетки эпидермальных и субэпидер-мальных тканей (Тран Тан Ван, 1981). Однако компетентность клеток может приобретаться ими в процессе культивирования [c.173]


    Обычно в основе вегетативного размножения растений лежит способность эмбриональной ткани меристемы (гл. 1, разд. Д. 4) дифференцироваться в корни и побеги. С другой стороны, при культивировании изолированных клеток флоемы или других дифференцированных тканей, как правило, формируется так называемый каллус, т. е. масса претерпевших дифференцировку клеток, напоминающих эмбриональные. При создании благоприятных условий, в частности при культивировании в среде, содержащей кокосовое молоко, а также при соблюдении соответствующего соотношения концентраций ауксина и цитокинина удавалось индуцировать реверсию, т. е. превращение клеток флоемы корня моркови в эмбриональные клетки, из которых затем развивалось целое растение [136]. Этот опыт имеет принципиальное значение, так как определенно доказывает, что дифференцированные клетки флоемы моркови содержат полный набор генов, необходимых для развития растения. Вместе с тем существенно и то, что с большинством растений такого рода опыт воспроизвести довольно трудно и процесс дедифференцировки далеко не всегда происходит автоматически. Все же это происходит в достаточном числе случаев, чтобы установить факт тотипотентности ядра дифференцированных клеток. [c.354]

    Эукариотические клетки, как правило, удается культивировать в лабораторных и производственных условиях с большим или меньшим успехом При сравнении, например, клеток дрожжей — сахаромицетов, используемых в производстве вин, и клеток — бластов человека, применяемых в производстве интерферона, культивирование последних сопряжено с большими трудностями, чем культивирование первых В такой же мере можно говорить о различиях клеток растений и животных Для клеток растений характерна тотипотентность, то есть способность любой отдельной растительной клетки в соответствующих условиях культивирования трансформироваться в целое растение Клетки животных не обладают такой способностью и выращивать их труднее, чем клетки растений [c.139]

    Из тотипотентных клеток легко получить лишенные клеточной стенки протопласты. Разработаны методы их культивирования для получения каллусной ткани и затем — небольших растеньиц, которых можно размножать обычными способами. [c.382]

    Клеточная инженерия — одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта — изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности — уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др. [c.158]


    Клональным микроразмножением называют неполовое размножение растений с помощью метода культуры тканей, позволяющее получать растения идентичные исходному. В основе получения таких растений лежит способность соматических клеток растений полностью реализовывать свой потенциал развития, т. е. свойство тотипотентности. Метод клонального микроразмножения получает все более широкое распространение во всем мире. В большинстве стран эта технология приобрела коммерческий характер. [c.193]

    Этапы развития дрозофилы подробно описаны. После оплодотворения и слияния материнского и отцовского ядер у дрозофилы происходят последовательные синхронные де тения ядра зиготы (рис. 116, 1 — 6). Образуется многоядерный, не имеющий клеточного строения синцитий, содержащий несколько сотен ядер. Ядра синцития эквивалентны по своим потенциям в развитии (тотипотентны), т. е. каждое ядро еще сохраняет способность быть предшественником любой ткани организма. Эти ядра еще не детерминированы. [c.212]

    Каллус герани, характеризующийся отсутствием морфогенетической способности, при переносе на другую, питательную среду приобретал способность через 8-10 недель индуцировать побеги, а затем корни [42]. Стюарт с сотр. [43] считают, что в принципе нормальные диплоидные клетки являются тотипотентными и неудача в индуцировании органогенеза объясняется отсутствием необходимых условий. [c.120]

    Подобного рода эксперименты доказали, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, т. е. что эти клетки тотипотентны. Кроме того, такие эксперименты позволили предположить, что сходные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития. Исследования, проведенные в Шотландии в 1996 г., привели к успешному клонированию овцы (Долли) из клетки материнского вымени. [c.46]

    Как же тогда объяснить тотипотентность ядер дифференцированных клеток Имеются многочисленные данные о том, что в цитоплазме яйцеклетки содержатся факторы, выключающие транскрипцию специализированных генов. Создается впечатление, что какой-то механизм переводит стрелки часов развития, заставляя клетки дифференцироваться. Вполне вероятно, что до тех пор, пока не происходит заметной потери ДНК из генома, модифицированная ДНК ферментативно превращается в исходную немодифицированную форму. Если рассматривать метилированную ДНК, то весьма существенно, что в случае отсутствия в цитоплазме яйцеклетки ферментов Е1 и Е2 (рис. 16-16) дальнейшего метилирования в ходе дробления не произойдет. На стадии гаструлы, когда, видимо, Начинают включаться часы развития, в ДНК большинства клеток метилированные оснований далжвы-Лтсутстврвать. [c.362]

    Важным преимуществом растений по сравнению с животными является возможность получения целого растения из одной клетки, основанная на свойстве тотипотентности. Результаты генетической инженерии растений во многом зависят от разработки методов культуры тканей, особенно методик регенерации различных растений. [c.49]

    Что такое тотипотентность каллусных клеток и какова частота ее реализации  [c.159]

    Тотипотентность — клеточная характеристика способности к формированию всех клеточных типов взрослого организма, или это — свойство соматических клеток растений полностью реализовать свой потенциал развития, то есть реализовать омнипотентность ядра с образованием целого организма. [c.499]

    Опыты Гёрдона [148, 149] позволили поразительным образом показать тотипотентность дифференцированных клеток эмбриона земноводных. Используя метод трансплантации, этот автор заменил ядро в яйцеклетке на ядро из клеток кишечного эпителия или других тканей. [c.356]

    Второй способ — индукщш разврггия адвентивных почек, т. е. почек, возникающих из растительных клеток и тканей, которые их обычно не образуют. Этот метод в значрггельной мере обусловлен тотипотентностью клеток. Почти любой орган или ткань растения, свободные от инфекции, могут быть использованы в качестве экспланта и в определенных условиях образуют адвентивные почки. Данный процесс вызывают внесением в питательную среду определенных концентраций цитокининов и ауксинов, причем цитокинина должно быть гораздо больше, чем ауксина. Это наиболее распространенный способ микроразмножения высших растений. Развивая адвентивные почки на апикальных и пазушных меристемах, размножают растения томата, лука, чеснока на сегментах листовых пластинок — салат, глоксинию, фиалки на тканях донца луковиц — лук, чеснок, гладиолусы, тюльпаны и другие луковичные растения. [c.195]

    Одной из основных задач селекционеров было получение высокоурожайных сортов растений с повышенной пишевой ценностью. Наибольшее внимание уделялось при этом таким зерновым культурам, как кукуруза, пшеница и рис, однако были осуществлены программы и по скрещиванию других сельскохозяйственных и садовых культур. В качестве важного инструмента прямого генетического воздействия на растения применяется технология рекомбинантньгх ДНК, широко используюшаяся в микробиологических системах. К настоящему времени разработано несколько эффективных систем переноса ДНК и экспрессирующих векторов, которые работают в ряде растительных клеток. Одним из достоинств последних является их тотипотентность из одной клетки может быть регенерировано целое растение, так что из клеток, сконструированных генноинженерными методами, можно получить фертильные растения, все клетки которьгх несут чужеродный(е) ген(ы) (трансгенные растения). Если такое растение цветет и дает жизнеспособные семена, то желаемый признак передается последующим поколениям. [c.373]


    Регенерация трансформированных клеток и отбор трансгенных растений. Регенерация взрослых растений из трансформированных клеток зависит от тотипотентности клеток и не всегда возможна. Тотипо-тентность хорошо выражена у клеток двудольных растений, таких как табак, картофель, свекла, соя, рапс, люцерна, томаты, морковь, капуста, некоторые плодовые. У однодольных, особенно злаков, этот признак выражен очень слабо, в связи с чем процесс регенерации клеток в целое растение проходит с большими трудностями. В настоящее время разработаны методы регенерации трансформированных клеток некоторых основных зерновых культур, таких как кукуруза, рис, пшеница, ячмень. Однако необходимо отметить, что с каждым годом методы регенерации разрабатываются для все большего числа растений. [c.50]

    Наиболее вероятными кандидатами для проведения генной терапии ех vivo (рис. 21.5) являются пациенты с наследственными заболеваниями, для лечения которьгх применяют трансплантацию костного мозга. Терапевтический эффект трансплантации костного мозга в отношении целого ряда болезней связан с наличием в нем тотипотентных эмбриональных стволовых клеток, которые встречаются с частотой могут пролиферировать и дифференцироваться в рахчичные типы клеток, такие как В- и Т-лимфоциты (В-клетки и Т-клетки), макрофаги, эритроциты, тромбоциты и остеокласты. Например, в том случае, когда генная мутация нарушает функции макрофагов, трансплантация костного мозга обеспечивает реципиенту постоянный запас компетентных макрофагов, происходящих из популяции тотипотентных стволовых клеток. [c.489]

    Генноинженерная модификация тотипотентных стволовых клеток с их последующей инфузией или трансплантацией пациенту для замещения утраченного типа клеток или генного продукта может стать основным способом генной терапии ех vivo. В качестве примера можно рассмотреть дефект АДА, приводящий к повышению в крови уровня аденозина и дезоксиаденозина, токсическое действие которых приводит к гибели В- и Т-лимфоцитов и развитию тяжелого иммунодефицита. Поскольку и В-, и Т-лимфоциты происходят из тотипотентных стволовых клеток, перенос в последние функционального гена АДА с последующим введением [c.489]

    Хотя растительные клетки и ткани принадлежат к более дифференцированным организмам в сравнении, например, с бактериями, тем не менее они способны культивироваться в форме неорганизованной клеточной массы (каллус). Каллусную ткань можно "заставить" формировать зародышеподобные структуры, почки, побеги, а на их основе — растения-регенеранты. Все это происходит благодаря тотипотентности растительных клеток (от лат. 1оШз — все, целый, ро1еп11а — сила, потенция). Понятие "тотипотентность" является клеточной характеристикой в нем отражен потенциал клетки воспроизводить все типы клеток, присущих взрослому организму. Другими словами клетка обладает способностью воспроизводить целый организм. [c.490]

    Полученные тем или иным путем протопласты либо используют для регенерации растения (см. тотипотентность), либо их можно подвергнуть слиянию с образованием гетерокариотических гибридов. [c.516]

    Многие аспекты роста и развития растительных клеток были исследованы на культивируемых клетках-как одиночных, так и в составе каллуса. Наиболее ярким проявлением тотипотентности многих соматических растительных клеток является их способность давать начало целому растению. Протопласты-растительные клетки, лишенные своей жесткой стенки,-можно изучать in vitro теми же методами, что и клетки животных они тоже способны регенерировать целое растение. [c.207]

    Сегодня мы знаем, что многие изолированные клетки, если их культивировать в соответствующих условиях, могут регенерировать в целое растение. Длетка, обладающая такой способностью к росту и формированию ткани, из которой затем развивается полноценное растение, называется тотипотентной. В се- редине 60-х гг. тотипотентность клеток была обнаружена у многих видов растений. [c.382]

    Многочисленные данные, полученные ботаниками, говорят о том, что по крайней мере в некоторых типах специализированных клеток взрослого организма содержится вся наследственная информация, которая в определенных условиях может быть реализована. В эмбриологии животных это явление носит название тотипотентности. Тотинотентная клетка обладает способностью превращаться в целый организм. Эта способность характерна, например, для клеток гипокотиля льна. Из придаточных почек, которые образуются из единственной эпидермальной клетки гипокотиля в ответ на повреждение этого органа, легко развивается целое растение. Специализированная эпидермальная клетка в норме больше уже не делится, на то она и специализированная клетка. Тем не менее повреждение соседних клеток за счет действия какого-то неизвестного нам механизма, имеющего, по всей вероятности, гормональную природу, заставляет эпидермальную клетку снова начать делиться. Образуется придаточная почка. Эта придаточная почка дает побег, который может укорениться и превратиться в [c.521]

    Клеточная биотехнология, основанная на уникальном свойстве клеток— их тотипотентности, способности к регенерации целого организма, а также продуцированию ими важнейших соединений вторичного синтеза, обеспечила ускоренное получение новых ценных форм и линий сельскохозяйственных растений, используемых в селекции на устойчивость, продуктивность и качество размножение ценных генотипов оздоровление растений от вирусов и вироидов получение биологически активных препаратов пищевого, кормового и медицинского назначения. В этой области также возникло много трудностей, главными из которых являются недостаточная частота регенерации клеток.и нарушение нормального онтогенеза организмов, узкий спектр самоклонапьных вариаций, слабая экспрессия генов, контролирующих важнейшие хозяйственно-ценные признаки организмов и вторичный метаболизм веществ. [c.16]

    Клеточная биотехнология базируется на способности клеток к существовании и размножении in vitro, их тотипотентности и регенерации. Метод культивирования изолированных тканей на искусственных питательных средах в стерильных условиях (in vitro) используют в биотехнологии для сохранения и размножения ценных генотипов, эмбриогенезе, оздоровлении посадочного материала и т. д. [c.77]

    Способность отдельной соматической клетки полностью реализовывать свою программу развития и давать начало целому растительному организму называют тотипотентностью растительной клетки. Любая растительная клетка обладает одинаковыми потенциальными возможностями, так как содержит весь набор генов и, следовательно, клетки сохраняют свойственную зиготе программу развития. Поэтому если мы получаем каллус из клеток лепестка цветка, или из клеток сердцевинной паренхемы стебля, или из клеток любой ткани, то в принципе каждая такая клетка может регенерировать целое растение. Однако свойство тотипотентности не всегда реализуется, так как потенциальные возможности клеток разных типов проявляются неодинаково. В некоторых из них гены в сильной степени репрессированы, в связи с чем проявление тотипотенности становится ограниченным. [c.97]

    Идея о тотипотентности растительной клетки была выдвинута Г. Ха-берландтом еще в 1902 г., хотя и не получила тогда экспериментального подтверждения. Согласно определению Хаберландта, любая клетка растения может дать начало новому организму, и если этого не наблюдается, то только потому, что растительный организм подавляет потенции клетки к развитию. Изоляция клеток от растений способствует проявлению этих потенций. [c.97]

    Независимость соматического эмбриогенеза от гормонов является аргументом в пользу точки зрения, высказанной еще Хаберландтом, а позднее Стэвардом, что сам процесс изолирования клетки стимулирует реализацию ее тотипотентности, т. е. переход к морфогенезу. Таким образом, [c.99]

    Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения — клонального микроразмножения (получение в условиях in vitro (в пробирке), неполовым путем растений, генетически идентичных исходному экземпляру). В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность, т. е. под влиянием экзогенных воздействий давать начало целому растительному организму. Этот метод, несомненно, имеет ряд преимуществ перед существующими традиционными способами размножения  [c.106]

    Формирование эмбриоидов в культуре тканей происходит в два этапа. На первом этапе клетки экспланта дифференцируются за счет добавления в питательную среду ауксинов, как правило, 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) и превращаются в эмбриональные. На следующей стадии необходимо заставить сформировавшиеся клетки развиваться в эмбриоиды, что достигается уменьшением концентрации ауксина или полного его исключения из состава питательной среды. Соматический эмбриогенез возможно наблюдать непосредственно в тканях первичного экспланта, а также в каллусной культуре. Причем последний способ менее пригодный при клональном микроразмножении, так как посадочный материал, полученный таким методом, будет генетически нестабилен по отношению к растению-донору. Как правило, соматический эмбриогенез происходит при культивировании каллусных клеток в жидкой питательной среде (суспензия) и является наиболее трудоемкой операцией, так как не всегда удается реализовывать свойственную клеткам тотипотентность. Однако этот метод размножения имеет свои преимущества, связанные с сокращением последнего (третьего) этапа клонального микроразмножения, не требующего подбора специальных условий укоренения и адаптации пробирочных растений, так как соматические зародыши представляют собой полностью сформированные растеньица. При использовании соответствующей техйики их капсулирования из этих эмбриоидов возможно получать искусственные семена. [c.114]

    Под действием электрического импульса происходит активация ооцита и слияние мембран между ядром клетки донора и энуклеированным ооци-том-реципиентом. Технология пересадки ядер клетки способствовала успешному получению клонированных живых кроликов, мышей, овец, коз, крупного рогатого скота и свиней. Было показано, что только эмбрионы на предимплантационной стадии являются тотипотентными, но эффективность этой технологии пока низка. У крупного рогатого скота была продемонстрирована следующая эффективность этой технологии на каждом этапе (%) энуклеация — 70—80, развитие морулы-бластоцисты клонированных эмбрионов — 20—30. В исследованиях K.P. Вондиоли (1991) 190 эмбрионов с пересаженными ядрами были получены из одного эмбриона путем многократной пересадки ядер из последовательно клонированных эмбрионов. Однако последовательные пересадки ядер после четвертого цикла сопровождались высокими эмбриональными потерями в матке. В итоге не удалось получить телят от пересадки эмбрионов, полученных после третьего цикла клонирования. [c.219]


Смотреть страницы где упоминается термин Тотипотентность: [c.159]    [c.566]    [c.38]    [c.113]    [c.148]    [c.72]    [c.90]    [c.521]    [c.522]    [c.119]    [c.49]    [c.49]    [c.78]   
Молекулярная биология клетки Том5 (1987) -- [ c.70 ]

Биохимия растений (1968) -- [ c.521 , c.522 ]

Современная генетика Т.3 (1988) -- [ c.248 , c.249 , c.258 , c.329 ]

Клеточная инженерия (1987) -- [ c.9 ]

Искусственные генетические системы Т.1 (2004) -- [ c.136 ]

Физиология растений (1989) -- [ c.331 , c.358 ]




ПОИСК







© 2025 chem21.info Реклама на сайте