Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичный метаболизм

    В связи с этим, здесь же следует обсудить такой вопрос, как целесообразность биосинтеза тех или иных веществ в живой клетке. Если в отношении продуктов первичного биосинтеза, в основном, все понятно функции белков, нуклеиновых кислот, углеводов и жиров достаточно ясны и многообразны — то относительно наших знаний о роли продуктов вторичного метаболизма в жизнедеятельности организмов, их продуцирующих, этого сказать нельзя. Бытует даже такое мнение, что эти вещества — отбросы жизнедеятельности живых клеток. Безусловно, такие [c.7]


    В настоящее время общепринятой (и мы также будем придерживаться ее) является классификация природных соединений на две основные группы вещества первичного биосинтеза и вещества вторичного метаболизма. Внутри первой группы вещества делятся на классы в соответствии с их химическим строением (по основным функциональным группам) и отчасти с их биологической функцией. Внутри второй группы вещества классифицируются также в соответствии с их принципиальной химической природой и путями биосинтеза. Внутри каждого класса, с учетом особенностей отдельных соединений, указывается их принадлежность к природным источникам и общность по деталям химического строения. Биологическая активность природных соединений рассматривается уже не как классификационный признак, а как свойства этих веществ. Т.е. мы видим, что основные классификационные признаки природных соединений — это путь биосинтеза и химическая структура. [c.9]

    Во вторичном метаболизме растений видное место занимают вещества, образовавшиеся путем конденсации друг с другом двух фрагментов С +Сз. Они получили название лигнанов. В природе реализуются несколько способов сочетания молекул фенилпро- [c.322]

    Кобаламин принимает участие в большом числе реакций основного и вторичного метаболизма, особенно в тех, которые сопровождаются перегруппировками углеродного скелета или перемещениями функциональных групп. [c.449]

    Обычно термин терпены применяется для обозначения соединений, содержащих целое число изо-С5-фраг-ментов независимо от того, содержатся ли в их молекулах другие элементы, чаще всего кислород. Терпеноиды — это соединения с различным числом углеродных атомов, но структурными их предшественниками являются правильные терпены, т.е. они образованы реакциями вторичного метаболизма терпенов. Иногда терпенами называют только углеводороды соответствующего состава и структуры, а терпеноида-ми — любые их производные и метаболиты. Но эти два понятия, как и сами классы соединений, так тесно взаимосвязаны между собой, что принципиального различия в терминологии можно и не делать. В общем, это терпены и терпеноиды. [c.137]

    Биотехнологические процессы в связи с особенностями метаболизма клеток Процессы в биохимической технологии в большинстве своем базируются на использовании продуктов вторичного метаболизма Даже в тех случаях, когда преследуют цель промышленного производства биомасс i клеток или тканей, оптимизация условий ее выращивания также основывается на знаниях особенностей метаболизма тест-культур Эффективность накопления такой биомассы по-прежнему оценивается экономическим коэффициентом (ЭК), то есть отношением веса сухой массы клеток (ткани)-У к весу потребленного углевода (Сп) Величину экономического коэффициента выражают в процентах, и она, как правило, обратно пропорциональна концентрации сахара ЭК%=У/Сп 100 [c.269]


    Биосинтез антибиотиков, как и любых других вторичных метаболитов, возрастает в фазе замедленного роста клеточной популяции (конец трофофазы) и достигает максимума в стационарной фазе (идиофазе). Считают, что в конце трофофазы изменяется энзиматический статус клеток, появляются индукторы вторичного метаболизма, освобождающие гены вторичного метаболизма из-под влияния катаболитной репрессии. Поэтому любые механизмы, тормозящие клеточную пролиферацию и активный рост, стрессовые ситуации, активируют процесс образования антибиотиков. [c.67]

    Следует чаще публиковать обзоры, посвященные практическому использованию быстро растущей информации о продуктах вторичного метаболизма. Поддается ли, например, контролю количество и многообразие продуцируемых вторичных метаболитов или каковы пределы эффективного полусинтетического получения новых веществ путем микробных трансформаций, уже давно успешно применяющихся, например, для модификации стероидов  [c.391]

    Состояние первичного метаболизма, способствующее синтезу тетрациклинов как продуктов вторичного метаболизма, характеризуется рядом факторов, возникающих в первичном метаболизме. [c.235]

    В качестве промежуточных веществ основного метаболизма образуются простые органические молекулы, такие как моносахариды, производные органических кислот и т.п. Некоторая часть их не окисляется до СО2 и Н2О, а служит исходным субстратом для вторичного метаболизма. В холе этого процесса такие простые молекулы, как, например, уксусная кислота, используются для конструирования — биосинтеза —- разнообразных веществ, необходимых для жизнедеятельности конкретного вида организмов. Биосинтез каждого природного соединения состоит из ряда стадий, каждая из которых катализируется специфическим белковым катализатором — ферментом. В результате из небольшого числа простых предшественников образуется огромное разнообразие органических соединений, называемых вторичными метаболитами. Изучением их структур и путей образования и занимается химия природных соединений. Поэтому ее можно назвать наукой о вторичном метаболизме, [c.10]

    Однако классификация продуктов вторичного метаболизма сложилась исторически и, несмотря на элементы непоследовательности, удобна в практической работе. Задача данной книги ввести начинающего исследователя в мир химических формул природных соединений таким образом, чтобы этот мир не выглядел сложным набором не связанных между собой структур, а предстал в виде системы, где каждое известное или вновь открываемое вещество находит свое логическое место. [c.13]

    В ХИМИИ природных соединений чрезвычайно важную роль играют биосинтетические процессы, ведущие к образованию изопренового скелета, так как последний служит структурным фрагментом, с участием которого в ходе реакций вторичного метаболизма строятся молекулы большого числа природных веществ, получивших название изопреноидов. О них более подробно речь будет идти в дальнейшем, а здесь уместно рассмотреть биосинтетический путь, по которому строятся природой простейшие олигомеры изопрена. [c.16]

    Исходным субстратом для их биосинтеза выступает уксусная кислота, которая всегда присутствует в живых организмах как продукт основного метаболизма. Чтобы вступить в биосинтетические реакции, ацетат активируется, реагируя под действием ферментов с важным участником основного и вторичного метаболизма коэнзимом А 1.2. [c.16]

    Одна из наиболее разветвленных ветвей вторичного метаболизма представлена изопреноидами. Происхождение названия и первые этапы биосинтеза этого класса веществ уже обсуждались (см. разд. 1.2.2). Упомянутые в нем простейщие углеводороды и спирты под действием ферментных систем живой природы могут подвергаться реакциям циклизации, окисления, восстановления, перегруппировки и многим другим, образуя чрезвычайно богатые числом членов группы веществ, играющих важную роль в жизнедеятельности производящих их организмов. Биосинтетические пути, ведущие к изопреноидам, функционируют, кроме растений, у грибов, водорослей, беспозвоночных и позвоночных животных, т.е. практически на всех уровнях организации живой материи. По мере подъема по эволюционной лестнице удельная роль изопреноидного метаболизма, в общем, уменьшается. Тем не менее, даже у млекопитающих такие изопреноиды, как холестерин, стероиды, долихолы, убихиноны составляют важный компонент их биохимического устройства. [c.77]

    Существует немалое число вторичных метаболитов, которые трудно отнести к какому-либо из рассмотренных выше классов природных веществ. Некоторые из них примечательны уникальностью химического строения, высокой физиологической активностью или широким распространением в природе. Без их упоминания представление о природных соединениях было бы неполным. Поэтому целесообразно завершить обзор структурной химии вторичного метаболизма описанием еще нескольких типов природных вешеств, не нашедших себе места в предыдущих главах и разделах. [c.612]


    Таким образом, завершен обзор структуры природных соединений — химических веществ, синтезируемых живыми организмами в ходе вторичного метаболизма. По необходимости этот обзор был кратким и в нем не нашли достаточного отражения многие аспекты знаний, прямо или косвенно соприкасающиеся с затронутой темой. Часто интересные и важные следствия или приложения химии природных соединений лишь упоминались и не получили более-менее полного освещения. [c.630]

    Другой способ получения антибиотиков состоит в использовании для их биосинтеза блокированных мутантов, у которых отсутствует (блокировано) определенное звено в цепи реакций, веду-ищх к синтезу антибиотика. Блокированные мутанты не способны образовывать нужный антибиотик. Используя низкую субстратную специфичность ферментов вторичного метаболизма и вводя аналоги предшественников антибиотика, последние переводят в аналоги самого антибиотика в ходе процесса, известного как мутационный биосрштез, или мутасинтез  [c.65]

    До сих пор речь щла у нас главным бразом о центральных метаболических путях, т.е. о путях превращения основных пищевых веществ клетки-углеводов, жиров и белков. На этих центральных путях потоки -мeтaJбoлитoв довольно внущи-тельны. Например, в организме взрослого человека ежесуточно окисляется до СО2 и воды несколько сотен граммов глюкозы. Есть, однако, и другие метаболические пути со значительно меньшим потоком метаболитов ежесуточный синтез или распад измеряется здесь миллиграммами. Эти пути составляют так называемый вторичный метаболизм, роль которого состоит в образовании различных специализированных веществ, требующихся клеткам в малых количествах. К вторичным метаболическим путям принадлежит, например, биосинтез коферментов и гормонов, потому что эти соединения вырабатываются и используются только в следовых количествах. Сотни различных высокоспециализированных биомолекул, в том числе нуклеотиды, пигменты, токсины, антибиотики и алкалоиды, продуцируются у разных форм жизни на вторичных метаболических путях. Все эти продукты, разумеется, очень важны для тех организмов, которые их вырабатывают, и все они выполняют какие-то определенные биологические функции. Однако специализированные вторичные метаболические пути, ведупще к их синтезу, не во всех случаях хорошо изучены. В этой книге мы лишены возможности рассматривать эти вторичные метаболические пути, порой весьма сложные мы здесь займемся главным образом центральными, или первичными, путями метаболизма. [c.391]

    Существуют понятия о реакциях первичного и вторичного обмена, или о первичном и вторичном метаболизме. [c.452]

    В последнее время, с целью увеличения количества активных веществ в том или ином природном источнике, в растениях чаще всего, используется метод серендиттности, суть которого сводится к тому, что растение, подвергшееся определенным экстремальным внешним воздействиям (засуха, обводнение, облучение и т.д.) интенсифицирует синтез соединений, защищающих его от этих внешних воздействий. Этот последний прием, кроме того, позволяет пролить свет на роль некоторых природных соединений, продуктов вторичного метаболизма главным образом, в жизнедеятельности исследуемого организма. [c.14]

    Высокое содержание нитратов, ионов аммония, калия, фосфата способствует быстрому росту клеток. Истощение среды значительно снижает рост и процессы вторичного метаболизма. Однако изначально низкое содержание фосфатов в питательной среде способно стимулировать синтез вторичных метаболитов. Установлено, что культивирование каллусов солодки голой на среде с половинной концентрацией азота и фосфора в темноте увеличивает содержание фенольных соединений в 1,6 раза по сравнению с каллусами, растущими на полной среде. В среду могут бьггь добавлены эндоспермы незрелых зародышей (кокосовый орех, конский каштан и др.), пасока некоторых деревьев, различные экстракты (солодовый, дрожжевой, томатный сок). Введение их в среду дает интересные результаты, но такие эксперименты трудно воспроизводимы, так как действующий компонент, как правило, точно неизвестен. Например, добавление в прггательную среду отдельных фракций кокосового молока не давало никаких результатов, в то время как нефракционированный эндосперм вызывал деление клеток. [c.162]

    В общем случае относительная важность поликетидов для различных типов организмов отчасти отражает относительную важность соответствующих видов ацил-КоА в их общем метаболизме. Например, распространенность различных ароматических полнке-тидов в высших растениях является следствием важности биосинтеза ароматических кислот как звена, соединяющего процессы фотосинтеза н лигнификации наличие в грибах ацетатных поликетидов отражает важность ацетил-КоА как регулятора их метаболической реакции на изменения окружающей среды преобладание пропнонатных поликетидов в актиномицетах, вероятно, связано с аналогичными специфическими процессами в их еще мало изученном промежуточном метаболизме. Синтез поликетидов часто Отражает степень использования организмом вторичного метаболизма как одного из механизмов регуляции его отношений со средой. В то же время под влиянием естественного отбора эти вторич- [c.411]

    Поразительно, какое большое число чисто гипотетических путей биосинтеза алкалоидов впоследствии, при экспериментальной проверке оказались правильными. Так же поразительно, что все многообразие продуктов вторичного метаболизма (частью которого является биосинтез алкалоидов) достигается с помощью просгых, почти шаблонных реакций, чего нельзя сказать о реакциях образования продуктов первичного метаболизма. Поэтому реакции вторичного метаболизма легко могут быть интерпретированы с помощью обычных представлений органической химии. Именно это обстоятельство способствовало тому, что большинство гипотез о биосинтезе алкалоидов подтвердилось. Оно л<е, очевидно, является причиной успешного моделирования путей биогенеза алкалоидов при их химическом синтезе. [c.542]

    Включение метки из [1- С] ацетата в чередующиеся атомы С-2, С-2, С-4 и С-6 кониина указывает на его происхождение иа Сз-поликетида или его эквивалента [57]. В таком случае вероятным промежуточным соединением является 5-оксооктановая кислота (60) действительно, эксперименты с мечеными соединениями показали, что кислота (60) и соответствующий альдегид (61) участвуют в биосинтезе кониина [58]. В ходе этих исследований неожиданно выяснилось, что предшественником кониина является также октановая кислота (59). Отсюда следует, что кониин образуется путем окисления жирной Са-кислоты (октановой), а ие путем восстановления Св-поликетида. Если эти выводы верны, то кониин представляет собой уникальное явление в сфере вторичного метаболизма, поскольку до сих пор не известно ни одного другого метаболита (за исключением полнацетиленов), который синтезировался бы по ацетатному пути из жирной кислоты. [c.554]

    В течение последних десятилетий широкое распространение получил метод культивирования растительных клеток. Культивируемые клетки особый интерес представляют как источники экологически чистых продуктов вторичного метаболизма растений, применяемых в медицине, пищевой промышленности, парфюмерии. Некоторые продукты синтеза растительньгх клеток представлены в табл. 1.1. [c.16]

    Традиционно химию природных соединений связывают с медицинским применением биологически активных веществ. И действительно, велика роль этой науки в создании сегодняшнего лекарственного арсенала. Также весом вклад ее в построение теоретического фундамента знаний о физиологически активных веществах и принципах их действия. Об этом и вообще о значении химии природных соединений для понимания проблем возникновения и функционирования жизни на Земле говорилось в самом начале, во введении. В заключение хотелось бы еще раз обратить внимание на тот факт, что изучение природных соединений заложило фундамент относительно новой отрасли науки — химической экологии. Во многих разделах данной книги можно найти примеры того, как живые организмы на всех уровнях эволюции вступают в такие взаимоотношения между собой, которые опосредуются прямым воздействием производимых ими вторичных метаболитов. Собственно говоря, становится все очевиднее, что основной смысл вторичного метаболизма заключается именно в том, чтобы создать невидимую глазу химическую среду обитания для живых существ планеты. Сегодня уже ясно, что без знания структуры и функций природных веществ невозможно разработать основы популяционной биологии, создать экологически щадящие системы сохранения урожая и вообще природопользования. Чтобы пояснить это, можно еще раз акцентировать внимание, например, на природных инсектицидах и фунгицидах избирательного действия, которые, во-первых, токсичны только для ограниченного круга вредителей и патогенов, и, во-вторых, быстро утилизируются прир0дньп 1и экосистемами. Применение таких средств вносит минимальные нарушения в экологическое равновесие и дает шанс на ослабление конфликта человека с природой в области сельскохозяйственного производства, лесопользования и т.п. [c.630]

    Из всех возможных ароматических тетрациклических систем наибольшее распространение среди продуктов вторичного метаболизма имеют производные тетрацена (нафтацена), т.е. вещества с линейным расположением всех колец. Иногда эту группу природных соединений называют антрацик-линами. Все они образуются по ацетатному биогенетическому пути через поликетидные предшественники. Полностью ароматические тетрацены как конечные продукты биосинтеза встречаются редко. Возникая на промежуточных стадиях, они далее подвергаются реакциям гидрирования, гидратации, алкилирования и другим, так что одно или несколько колец теряют ароматический характер. [c.408]

    Более часто простые пирролы фигурируют во вторичном метаболизме грибов и бактерий, особенно обитающих в морской воде. Здесь много внимания уделялось соединениям, обладающим антибиотическими свойствами. Один из наиболее простых антибиотиков грибкового происхождения — веррукарин Е — имеет химическое строение 6.58. [c.442]

    Кроме нуклеиновых оснований, некоторые другие биологически важные вещества содержат в молекуле пиримидиновый фрагмент. Среди них прежде всего следует назвать тиамин 6,700 или витамин Наличие этого вещества обязательно для всех организмов. Тиамин в виде эфира пирофосфорной кислоты входит в состав ферментов — декарбоксилаз а-кетокислот. В частности, энзим пируватдекарбоксилаза катализирует превращение пировиноградной кислоты в ацетальдегид и далее в ацетат. Как уже обсуждалось, эта реакция занимает ключевое положение в первичном и вторичном метаболизме основные типы углеродных скелетов строятся при участии ацетилкоэнзима А. Млекопитающие не способны к биосинтезу тиамина и должны получать его с пищей. Суточная потребность для человека составляет не менее 0,8 мг в сутки. Под названием кокарбоксилаза пирофосфат тиамина применяется как лекарственный препарат для лечения нарушений сердечной деятельности и некоторых нервных расстройств. [c.583]

    Из дисульфидов повсеместно встречается липоевая кислота 7.10. Она служит кофактором ферментов декарбоксилирования а-кетокислот, в том числе пировиноградной кислоты в ацетат. Этот процесс является ключевым звеном, связывающим первичный и вторичный метаболизм во всей живой природе. Поэтому дитиолан 1.10 — непременный ингредиент всех живых организмов, хотя содержание его в природных объектах невелико исследователям, впервые изучавшим коферментную функцию липоевой кислоты, для получения 30мг ее пришлось переработать Ют водного экстракта печени крупного рогатого скота. [c.614]

    Важно также сохранить присущие клеткам метаболические пути при их выращивании в суспензионных культурах. Более того, регулируя обмен, можно добиваться заметного повышения выхода целевых продуктов. При этом всегда необходимо учитывать тип дифференцировки, или состояния специализации исходных клеток, так как от него зависит видоспецифичность первичного и вторичного метаболизма. [c.509]


Библиография для Вторичный метаболизм: [c.76]   
Смотреть страницы где упоминается термин Вторичный метаболизм: [c.7]    [c.8]    [c.327]    [c.318]    [c.65]    [c.430]    [c.715]    [c.144]    [c.200]    [c.305]    [c.305]    [c.411]    [c.414]    [c.523]    [c.119]    [c.391]    [c.499]   
Основы биохимии Т 1,2,3 (1985) -- [ c.391 ]

Жизнь микробов в экстремальных условиях (1981) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте