Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство биологически активных препаратов

    Метиламины получают в промышленности каталитическим аминированием метилового спирта. Процесс аминирования предназначен для получения моно-метиламина (ММА). диметиламина (ДМА) и триметиламина (ТМА) — ценных промежуточных продуктов, используемых в качестве исходного сырья в производстве растворителей, моющих средств, фармацевтических препаратов, гербицидов, бактерицидов, ускорителей вулканизации резины, красителей, биологически активных веществ, взрывчатых веществ, ракетных топлив и т. п. [c.290]


    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]

    В последние годы в науке и технике производства витаминов из природного сырья.развилось новое научное направление, известное под названием Идентификация биологически активных веществ природного сырья с целью их комплексного промышленного использования . При комплексном использовании предусматривается получение ряда витаминных препаратов из одного вида сырья. Разработана технология получения витаминных препаратов из новых видов природного сырья черноплодной рябины, столовой свеклы, бадана и др. [c.4]

    Производство биологически активных веществ продуктивных мутантов сельскохозяйственных культур и микроорганизмов, инсектицидов и хемостерилянтов насекомых, лекарственных препаратов. [c.219]

    РАЗРАБОТКА ЭФФЕКТИВНЫХ МЕТОДОВ СИНТЕЗА ПОЛИФУНКЦИОНАЛЬНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ЛИНЕЙНОГО И ГЕТЕРОЦИКЛИЧЕСКОГО СТРОЕНИЯ, ПЕРСПЕКТИВНЫХ В КАЧЕСТВЕ ЗАКАЗНЫХ ХИМИЧЕСКИХ РЕАКТИВОВ ДЛЯ НАУЧНЫХ ИССЛЕДОВАНИЙ И ПОЛУПРОДУКТОВ В ПРОИЗВОДСТВЕ БИОЛОГИЧЕСКИ АКТИВНЫХ ПРЕПАРАТОВ, СПЕЦИАЛЬНЫХ КРАСИТЕЛЕЙ, ПОЛИМЕРОВ, АНТИОКСИДАНТОВ [c.121]

    Использование белков. Исключительная роль белковых веществ в живых организмах, ряд их ценных технических свойств превратили белок в незаменимый продукт питания и важный вид сырья для г.шогих отраслей промышленности. Все возрастающую роль играет производство биологически активных белковых препаратов ферментов, гормонов, антисывороток, кровезаменителей. [c.267]


    Производство биологически активных препаратов [c.330]

    При измельчении сырья и полупродуктов, стандартизации препаратов, а также на всех этапах технологического процесса производства ферментных препаратов необходимо соблюдение санитарно-гигиенических мероприятий, предусматривающих ведение процесса производства биологически активных веществ без бактериального заражения, а также без распыления как сырья, полупродуктов, так и вспомогательных материалов и готовых ферментных препаратов. [c.168]

    Для производства биологически активных препаратов при меняют древесную зелень хвойных пород В хвое содержится [c.330]

    Поскольку процессы промышленного микробиологического синтеза в своем технологическом и аппаратурном оформлении имеют много общего, они могут обсуждаться как единая отрасль промышленности со своими закономерностями и спецификой. Это отразилось и на построении указанных учебных пособий первое из них, хотя и посвящено конкретно биосинтезу белковых веществ, содержит главы 2 и 3, в которых дано общее представление о типичной структуре производства в биотехнологии и о способах получения основных сырьевых источников, используемых во всех разновидностях промышленного микробиологического синтеза. Во-втором излагаются лишь фактическое состояние и перспективы развития производства биологически активных препаратов микробного происхождения. [c.5]

    Микробиологическое производство биологически активных веществ и препаратов является важным направлением промышленной биотехнологии, обеспечивающим народное хозяйство такими ценными продуктами, как аминокислоты, антибиотики, микробиологические удобрения и средства защиты растений и т. п. В книге 6 серии Биотехнология рассмотрены основные закономерности микробиологического синтеза биологически активных веществ, принципы технологического и аппаратурного оформления этих процессов, а также даны характеристики продуктов, выпускаемых промышленностью. [c.5]

    Одним из процессов, который получил большое применение, является фторирование. Оно широко используется в технологии редких элементов, в производстве синтетических материалов и биологически активных препаратов. Имеется много работ по изучению реакций кислот и оснований в безводном НР и других фторсодержащих растворителях. В ходе этих исследований было обнаружено большое число новых, весьма своеобразных соединений. В качестве примеров назовем некоторые из этих веществ. [c.286]

    Одним из процессов, который получил огромное применение за последние десятилетия, является фторирование. Оно широко используется в технологии редких элементов, в производстве синтетических материалов и биологически активных препаратов. В процессе фторирования весьма трудной задачей является подбор растворителя для проведения этой реакции, поскольку фтор разрушающе действует на большинство веществ. Это обстоятельство вызвало появление значительного числа работ по изучению реакций кислот и оснований в безводном НР и других фторсодержащих растворителях. В этих исследованиях было обнаружено большое количество новых, весьма своеобразных соединений. В качестве примеров назовем некоторые из этих веществ. [c.255]

    Азотсодержащие соединения находят широкое применение в производстве синтетических волокон, пластмасс, искусственной кожи, каучуков, поверхностноактивных и моющих веществ, ионообменных смол, фармацевтических препаратов, присадок к топливам и маслам, ингибиторов коррозии, биологически активных веществ, флотореагентов, растворителей, текстильно-вспомогательных веществ, бактерицидов, гербицидов, фунгицидов, ускорителей вулканизации резины, красителей, абсорбентов кислых газов, взрывчатых веществ, ракетных топлив и для многих других целей. [c.278]

    Одним из практически важных процессов является фторирование. Этот процесс широко используется в технологии редких элементов, в производстве синтетических материалов и биологически активных препаратов. При исследованиях реакций фто- [c.303]

    Четвертая группа — низинные торфы средней степени разложения, содержащие до 30-35 % гуминовых кислот и до 3,5 % азота — широко используются в сельском хозяйстве в качестве органических удобрений, грунтов различного назначения при получении биологически активных препаратов, для газификации и производства брикетов. [c.436]

    МИКРОБИОЛОГИЧЕСКОЕ ПРОИЗВОДСТВО БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ И ПРЕПАРАТОВ [c.144]

    В микробиологической промышленности предстоит значительно увеличить производство товарного микробиологического белка и аминокислоты лизина (кормовая добавка), антибиотиков для кормовых и ветеринарных целей, кормовых витаминов, ферментных препаратов, премиксов (смесей биологически активных веществ — витаминов, микроэлементов, аминокислот), бактериальных удобрений (препаратов, содержащих полезные для сельскохозяйственных растений микроорганизмы) и Другой продукции. Так химия должна помочь решению одной из важнейших задач в области сельского хозяйства — развитию животноводства. [c.7]


    Разработка методов анализа органических веществ является еще одной важной проблемой современной аналитической химии. В последние годы возникло много соверщенно новых производств, вырабатывающих пластмассы, полимеры, элементоорганические соединения, биологически активные и фармацевтические препараты, пестициды и др. Развилась промышленность тяжелого органического синтеза, переработки нефти, природного газа, угля. Для этих производств необходимы надежные методы анализа сырья, полуфабрикатов и готовой продукции. [c.17]

    Процессы с участием а-оксидов лежат в основе производства ряда крупнотоннажных продуктов - этиленгликоля, который используют в качестве основы для получения антифризов, растворителей, полиэфиров [1] и холинхлорида биологически активного компонента многих лекарственных препаратов, кормовых добавок и питательных составов в животноводстве и растениеводстве [2-5]. [c.5]

    Несмотря на значительный прогресс фундаментальной и прикладной науки в создании новых лекарственных препаратов и технологий их производства, в медицине остаются актуальные и нерешенные проблемы направленной доставки лекарства непосредственно в патологический очаг организма больного токсичности и побочного действия, продолжительности действия и устойчивости препарата в физиологических условиях. Установлено, что лекарственные препараты, применяемые в обычных формах, ограниченно и медленно преодолевают барьер клеточных биологических мембран многие препараты, после введения, довольно быстро подвергаются деструкции под воздействием различных защитных систем организма, что сводит к минимуму необходимый терапевтический эффект. Эти факторы нередко затрудняют или делают невозможным медицинское применение ряда высокоактивных соединений и препаратов на их основе. В настоящее время при поиске природных и синтетических органических веществ со специфической биологической активностью, необходимой для конструирования новых лекарственных средств, все большое внимание исследователей привлекают подходы, основанные на придании препаратам способности к биоспецифическому направленному транспорту через клеточные мембраны и концентрированию в клетках-мишенях. Один из таких подходов основан на использовании липидных везикул нанодиапазона, получивших название липосомы, в качестве средства для направленной внутриклеточной транспортировки лекарственных субстанций при этом существенно понижается токсичность препарата (в сравнении со степенью токсичности препарата в обычной форме). [c.10]

    Хвойная хлорофилло-каротиновая паста — биологически активный препарат, технология получения которого вполне разработана. Это производство, как и сама идея препарата, является результатом многолетних работ по использованию живых элементов дерева, проводимых под руководством Ф. Т. Солодкого. В 1955 г. был выполнен проект, по которому строятся, работают или находятся в разных стадиях пуска многочисленные установки. Проект выполнен так, что предполагает расширение и пополнение технологического процесса получения хвойно-хлорофилло-каротиновой пасты выработкой новых, в основном биологически активных продуктов по мере окончания их разработки, испытаний, подготовки технологии и сбыта. [c.278]

    Сульфиды являются исходным сырьем в производстве красителей лекарственных и биологически активных веществ препаратов для декорирования стекла, металла, дерева продуктов окисления — сульфоксидов, еульфонов и алкилсульфокислот растворителей и экстрагентов ингибиторов коррозии металлов противозадирных, антиокислительных присадок к топливам и маслам флотореагентов и поверхностно-активных веществ пластификаторов высокополимеров препаратов для сельского хозяйства тиофенов. [c.54]

    Биологически активные вещества первого поколения выпускались в виде растворов или сухих веществ в результате обработки торфов, углей щелочами. Если в технологии предусматривалось удаление твердого остатка (так называемого остаточного торфа или угля), получаемый гумат назывался безбалластным. Если после смешения реагентов нерастворимый остаток не удатялся, препарат назывался балластньш . В первом случае значительная часть сырья шла в отвал, во втором в продукте существеннзто долю составлял биологически неактивный остаточный уголь (торф). На рис. 2.4 представлена схема производства гранулированного балластного биостимулятора роста растений на основе сажистого угля. [c.26]

    Третье направление — лесохимическая промышленность, пережи-вающ второе рождение благодаря все расширяющейся переработке экстрактивных веществ, не только древесины, но главным образом и древес-нЬй зелени. Из зелени хвойных получают витаминные кормовые добавки и другие биологически активные продукты, используемые для производства фармацевтических и парфюмерно-косметических препаратов, а также эфирные масла, хвойный воск. При этом не теряет своего значения производство канифоли и скипидара, которые пока еще не удалось полностью заменить синтетическими продуктами и без которых не могут обойтись ни лакокрасочная, ни фармацевтическая, ни парфюмерно-косметическая промышленность. Из коры ряда древесных пород получают дубильные экстракты, требующиеся для кожевенной промышленности. Пиролизные производства дают такой незаменимый продукт, как древесный уголь, из которого вырабатывают активный уголь, потребляемый в значительных количествах химической промышленностью. При пиролизе получают также пищевую уксусную кислоту, метанол, древесные смолы. Важное значение имеет энергетическое направление использования древесины - ее газификация. [c.7]

    К красителям и красящим веществам, применяемым в производстве лекарственных препаратов, предъявляются специальные требования, основными из которых являются безвредность в применяемых дозах (в том числе отсутствие канцерогенности, тератогенности, мутагенности) отсутствие явно выраженной биологической активности отсутствие взаимодействия с лекарственными веществами прочность окраски (отсутствие миграции, диффузии красителя, устойчивость к действию света, изменению pH среды, действию окислителей и восстановителей, повышению температуры) высокая степень окрашивания при малых концентрациях красителя способность растворяться в воде или жирах или равномерно распределяться в массе лекарственньтх препаратов отсутствие посторонттих вкуса и запаха [44, 45]. [c.389]

    Следует еще раз подчеркнуть, что лекарственный препарат (лекарственная форма) состоит не только из биологически активного вещества — основного носителя лечебного эффекта, а из комбинации химических соединений как органической, так и неорганической (консерванты, стабилизаторы, солюбилизаторы, эмульгаторы, наполнители, растворители, матрицы и др.). Эта комбинация должна обеспечить не только стабильность фармакохимических свойств препарата при производстве и хранении, но и необходимые условия для высвобождения и поступления через слизистые, кожу и места инъекций находящейся в ней действующей субстанции с реализацией должного лечебного эффекта, т.е. конечной цели — создания эффективного и безопасного лекарственного препарата. [c.12]


Библиография для Производство биологически активных препаратов: [c.296]    [c.4]   
Смотреть страницы где упоминается термин Производство биологически активных препаратов: [c.29]    [c.22]    [c.444]    [c.99]    [c.81]    [c.3]    [c.89]    [c.382]    [c.229]    [c.62]    [c.89]    [c.114]    [c.67]    [c.270]   
Смотреть главы в:

Технология и оборудование лесохимических производств -> Производство биологически активных препаратов




ПОИСК







© 2025 chem21.info Реклама на сайте