Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия жидкостей в каучуках резинах

    Ингредиенты резиновых смесей существенно влияют на стойкость резин к набуханию. Увеличение дозировок техуглерода и неактивных наполнителей сокращает содержание каучука в резине и повышает ее стойкость к набуханию. Активный техуглерод марок П-324, П-234, К-354 с большой удельной геометрической поверхностью и развитой структурой снижает диффузию жидкостей в каучуки. Введение каолина повышает маслостойкость, барита и техуглерода — химическую стойкость. Присутствие пластификаторов увеличивает набухание, поэтому их дозировки сокращают и подбирают вещества, не растворяющиеся в данной агрессивной среде. Повышенное содержание связанной среды, введение ультраускорителей или активных ускорителей повышает стойкость резин к набуханию. Защитные коллоиды (казеин, столярный клей) также увеличивают стойкость к набуханию. [c.201]


    ДИФФУЗИЯ ЖИДКОСТЕЙ В КАУЧУКАХ И РЕЗИНАХ [c.354]

    Исследования массопереноса газов, паров, жидкостей и других веществ через каучуки и резины часто являются важной технической задачей. Они необходимы для разработки уплотнительных материалов, диафрагм, покрытий, а также материалов для контейнеров, оболочек аэростатов, газгольдеров, баков, лодок, спасательного имущества, шлангов, камер автошин и многих других надувных изделий из резины или прорезиненных тканей. Такие исследования имеют и весьма существенное научное значение. В частности, изучение диффузии и растворимости позволяет судить о структуре эластомеров и характере теплового движения макромолекул. Перенос низкомолекулярных веществ в полимерах играет основную роль при изучении многих процессов, протекающих при изготовлении и эксплуатации резиновых изделий, например при вулканизации и окислении резин, при действии на резины агрессивных паров, жидкостей и др. Вопросы массопереноса в каучуках и резинах рассмотрены в ряде монографий и обзоров [1-5]. [c.344]

    Коэффициент диффузии газов (при мол. массе менее 40) в каучуках и резинах не зависит от давления газа (в пределах обычно применяемых в практике давлений) и обусловливается природой газа и полимера (в частности, рецептурой и степенью вулканизации резины), а также температурой. В случае жидкостей или твердых веществ, растворенных в резине, необходимо учитывать наличие концентрационной зависимости коэффициента диффузии. [c.346]

    Во все резиновые смеси антикоррозионного назначения и в большинство жидких гуммировочных и герметизирующих составов вводят порошкообразные минеральные или органические наполнители. В результате существенно улучшаются технологические характеристики перерабатываемых смесей, повышаются физико-механические свойства вулканизатов и, если наполнители правильно подобраны, снижается скорость диффузии и набухание в жидкостях. В резины и гуммировочные составы, применяемые для защиты от коррозии химической аппаратуры, вводят наполнители, или совсем не растворяющиеся в кислотах (например, технический углерод, кокс, барит) или с повышенной кисло тостойкостью (например, белая сажа, диатомит, каолин, тальк, титановые белила). Однако светлые наполнители из группы силикатных материалов недостаточно стойки во фтористоводородной и кремнефтористоводородной кислотах и не выдерживают действия горячих щелочей, а диоксид титана растворяется в нагретых серной и фосфорной кислотах. Вводя в резины гидрофобные наполнители, удается понизить набухание в воде путем введения активных олеофоб-ных наполнителей в нитрильные каучуки можно повысить бензостойкость соответствующих резин. [c.8]


    При дублировании двух слоев не-вулканизованных резиновых смесей, которые можно рассматривать как вязкие или упруговязкие жидкости, сравнительно быстро достигается плотный контакт по площади, соответствующей номинальной площади контакта. Если полимеры несовместимы термодинамически, то между ними сохраняется четкая граница раздела. При этом адгезия определяется межмолекулярным взаимодействием [32] или (при полном отсутствии воздушных включений, загрязнений и оксидных пленок на поверхности) когезионной прочностью более слабого компонента, же юлимеры совме Т1ш 1 (самопроизвольно смеши-ваютсяУРгоГвследствие взаимодиффузии макромолекул будет происходить постепенное размывание границы контакта с образованием промежуточного диффузного слоя. При этом граничный слой приобретает свойства полимера в объеме и прочность адгезионного соединения также следует рассматривать с позиций общих представлений о природе (объемной) прочности полимеров. При соединении резиновой смеси с вулканизатом, даже если они приготовлены на основе совмещающихся каучуков, вследствие наличия пространственной устойчивой структуры у вулканизата возможна, главным образом, односторонняя диффузия смеси. Поэтому всегда сохраняется четкая граница раздела и глубокий микрорельеф поверхности. Истинная (фактическая) площадь контакта в этом случае может быть гораздо больше (в десятки раз) номинальной [39, 40] и при полном покрытии этого рельефа пластичной резиновой смесью прочность связи может быть довольно высокой (до 1—2 МПа), даже если удельное межмолекулярное или химическое взаимодействие сравнительно мало и имеются многочисленные дефекты и включения в граничном слое. Например сложная структура технических волокон (рис. 2.18) может быть причиной многих дефектов резино-кордной системы. [c.96]

    Порядок расположения каучуков по увеличению значений О для системы неозон Д — каучук сохраняется таким же, как и в случае диффузии газов в этих каучуках [82]. Значение коэффициента диффузии неозона Д в полибутадиене (2-10 см /с) при 20 °С приблизительно на два порядка ниже, чем при диффузии кислорода в полибутадиене (1,5-10 см /с), чехм, возможно, объясняется меньшая активность действия антиоксидантов в каучуках по сравнению с действием их в жидкостях, где О для кислорода и антиоксидантов составляют величину одного порядка [83]. Вулканизованные каучуки характеризуются пониженными-значениями коэффициентов диффузии по сравнению с исходными. Так, с увеличением густоты пространственной сетки для неозона Д — коэффициенты диффузии в резинах уменьшаются, а при температурах от 20 до 40 °С наблюдается повышение Ев- Однако с повышением температуры значения Ев для резин с различной густотой сетки понижаются, стремясь к предельному значению, равному Ев для антиоксиданта в исходном каучуке [84]. [c.358]

    Наиболее характерными примерами сильного влияния напряжения на поведение эластомеров являются катастрофиче-С7<ое разрушение растянутых резин из ненасыщенных каучуков под действием следов озона при практически неизменных их свойствах в результате контакта с ним ненапряженных резин [5, 7] и резкий сдвиг температуры хрупкости резин в сторону уменьшения при растяжении и некоторое ее повышение при сжатии по сравнению с недеформированными образцами. Отсюда очевидно, что характер напряжения также играет существенную роль. По действию агрессивных жидкостей на механические свойства предложена различная классификация резин по их стойкости при растяжении, сжатии, многократных деформациях, трении по гладкой поверхности [9]. Изменение механических свойств, однако, является конечным результатом влияния напряжений на направление химических реакций, в том числе иа соотношение процессов деструкции и структурирования,-на диффузию ингредиентов [10], что проявляется, например, в различной скорости старения разных участков резин, находящихся в сложно-напряженном состоянии [И], на разрушение и образование физических структур, в частности на развитие процессов кристаллизации [12]. [c.9]

    На рис. 22 показано поведение метилполисилок-сановон и органических резин в ряде растворителей. Как видно из рисунка, полисилоксановая резпна меньше набухает в большинстве растворителей, чем натуральный каучук. Неопрен ОЫ отличается меньшим набуханием только в некоторых растворителях. Из рис. 22 также видно, что термин стойкость к растворителям не имеет смысла, если не указан растворитель. Резина, имеющая превосходную бензостойкость, может сильно набухать в диэфирах, и наоборот. Вязкость жидкости и скорость ее диффузии в резину еще более осложняют картину. Все это частично объясняет разнобой имеющихся в литературе данных. [c.55]


Физико-химические основы получения, переработки и применения эластомеров (1976) -- [ c.354 , c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия жидкостях



© 2025 chem21.info Реклама на сайте