Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смеси полимеров термодинамически несовместимы

    Практически смешать с полимером можно любое вещество, но эта смесь будет стабильной только в том случае, если вводимое вещество и полимер способны растворяться друг в друге в используемом интервале соотношений. Пластификаторы, несовместимые с полимером, при механическом перемешивании образуют в полимерном веществе тончайшую эмульсию. В процессе хранения такой смеси происходит постепенное слияние частиц, пластификатор выпотевает на поверхность смеси. Подобные системы нельзя использовать вследствие самопроизвольного разделения фаз. При хорошей совместимости пластификатора с полимером термодинамически устойчивые гомогенные растворы образуются либо в процессе смешения, либо при хранении смеси в результате ее гомогенизации за счет диффузии. [c.93]


    Температуру стеклования полимеров находят различными методами, характеризующими зависимость релаксационных свойств от температуры. Точность оценки зависит от способа смешения и от применяемого метода. С уменьшением величины кинетических сегментов, определяющих положение температуры стеклования, смесь полимеров, характеризуемая как термодинамически совместимая, может оказаться термодинамически несовместимой. [c.20]

    Термодинамический анализ и результаты исследований по определению взаимной растворимости полимеров позволили заключить, что взаимная несовместимость является общим правилом. Однофазные смеси, видимо, образуют нитрат целлюлозы и полиметилметакрилат, нитрат целлюлозы и сополимер стирола с акрилонитрилом, нитрат целлюлозы и сополимер стирола с ме-тилметакрилатом [26], поливинилхлорид с поли-е-капролакта-мом [27] и некоторые другие пары полимеров. На основе имеющихся экспериментальных данных считают [1, с. 16], что при получении полимерных композиций однофазную смесь можно получить с вероятностью не более 5%, а около 85—90% всех возможных бинарных смесей полимеров имеют пределы взаимной растворимости не более нескольких процентов. Ниже приведены некоторые совместимые и несовместимые пары полимеров [4, с. 63, 64]  [c.13]

    При изучении многими методами микроструктуры смешанных в расплаве термодинамически несовместимых полимеров ПЭ и ПС различных молекулярных масс при всевозможных соотношениях компонентов было установлено [428], что степень дисперсности частиц в двухфазной системе определяется не химической природой дисперсной фазы, а различием в реологических свойствах и в составе фаз. Чем больше различие в вязкости и высокоэластичности компонентов, тем сильнее влияние состава смеси на ее дисперсность. Основные закономерности формирования структуры в смеси расплавов сводятся к следующему если вязкость и высокоэластичность компонента, количество которого недостаточно, значительно больше, чем основного компонента, то образуется грубодисперсная композиция если, наоборот, меньший компонент хорошо распределяется в системе. Если вязкости компонентов близки, то образуется высокодисперсная смесь независимо от того, какой компонент является дисперсной фазой, какой — дисперсионной средой. Образование взаимопроникающей двухфазной структуры возможно только в том случае, когда соотношения между вязкостью и высоко- [c.214]

    Часто термодинамически несовместимые смеси полимеров в общем растворителе совмещаются кинетически. Из-за высокой вязкости подобная смесь практически не расслаивается во время подготовки раствора и формования волокна и стабильна в течение достаточно длительного времени. Стабильность подобных смесей может быть дополнительно повышена добавкой третьего полимера, содержащего функциональные группы первого и второго полимера. Например, смесь ПАН и диацетата целлюлозы в диметилформамиде оказывается более стабильной при добавлении небольших количеств того же ацетата, к которому привиты полиакрилонитрильные боковые цепи. [c.140]


    Практически приготовить можно однородную на вид смесь двух любых полимеров, обрабатывая их в смесителях при температуре, превышающей Гс обоих компонентов. При смешении термодинамически несовместимых полимеров такая смесь всегда будет двухфазной, гетерогенной, но вследствие в окой вязкости системы время расслоения смеси на фазы может быть настолько большим, что композиция не будет менять свойства в течение всего периода эксплуатации изделия (эксплуатационная совместимость). [c.84]

    Оптические методы. Для характеристики однородности смтеей полимеров неоднократно использовались различные оптические методы, в том числе контрастная микрофотографияэлектронная микроскопия рентгеноскопия светорассеивание и другие методы Эти методы наглядно показывают степень взаимного перемешивания компонентов и средний размер частиц в каждой фазе. Если размер частиц в фазе соизмерим с длиной применяемой в эксперименте волны, то смесь получается прозрачной. Уменьшение длины волн в стандартном оптическом микроскопе, в ультрамикроскопе, в электронном микроскопе выявляет неоднородность систем вплоть до обнаружения высокоорганизованных образований, присущих индивидуальным исходным полимерам. Опыт показывает, что высокоорганизованные структуры в исходных полимерах, обнаруживаемых при электронной микроскопии, наблюдаются и после смешения. Поэтому оптические методы характеризуют относительную степень диспергирования полимеров и дают дополнительную информацию, подтверждающую их общую термодинамическую несовместимость. С помощью оптических методов можно определить, какой из двух смешиваемых полимеров является дисперсионной средой, а какой дисперсной фазой. Поэтому оптические методы особенно ценны при изучении свойств смесей полимеров, применяемых в промышленности. [c.21]

    Пусть между двумя полимерами существует поверхностный слой толщиной 1000 А (о толщине слоя будет сказано ниже). При соотношении компонентов 1 1 объем переходного слоя в 2 г смеси составляет около 0,6 м или 0,6 г (при р 1 г/см ). На долю каждого полимера приходится, очевидно, половина этой величины. Таким образом, около 30% каждого полимера находится в состоянии переходного слоя. При (1 = 0,2 мм уже вся смесь окажется состоящей из переходных слоев и, несмотря на термодинамическую несовместимость, можно говорить о квазирастворимости одного полимера в другом. В этом случае, однако, теряется сам смысл представления о переходном слое — исчезает различие между смесью несовместимых компонентов и переходным слоем. [c.204]

    Широкие возможности для варьирования уровня гетерогенности и степени совмещенности полимер-полимерных систем в твердой фазе дает использование метода, основанного на совместном диспергировании полимеров при интенсивных силовых воздействиях типа давления со сдвигом (ИСВДС) [6-8]. Если переработке подвергается смесь полимеров, процесс сопровождается значительными изменениями структурной упорядоченности систем, что существенным образом сказывается на свойствах полимерной композиции, в том числе на ее термоустойчивости. В процессе ИСВДС получаются однородные композиции из термодинамически несовместимых полимеров, например, ПВХ с полиэтиленом (ПЭ) и полипропиленом (ПП), этилен-пропиленовыми сополимерами, полибутадиеном. В определенном температурно-скоростном режиме измельчения и в определенном интервале соотношений компонентов, зависящем от природы второго полимера, полимерные смеси получаются в виде однородных высоко дисперсных порошков. Весьма примечательно, что смеси ПВХ-ПЭ, полученные ИСВДС и содержащие > 20% мае. ПЭ, характеризуются пониженной термоустойчивостью. В смесях, содержащих более 80% мае. ПЭ, процесс дегидрохлорирования ПВХ резко ускоряется (рис. 1). [c.248]

    Совместимость стабилизатора с полимером характеризуют термодинамической величиной — концентрацией насыщения. При значениях последней ниже применяемой концентрации стабилизатора смесь полимера со стабилизатором более или менее быстро расслаивается и стабилизатор выпотевает на поверхность полимера. Хотя в некоторых случаях и выгодно обогащение поверхностного слоя антиоксидантом (например, при фотостабилизации резин), в общем это явление нежелательно. Поэтому при несовместимости стабилизаторов с полимером часто прибегают к структурной модификации первых, чтобы избежать этого явления (например, введение длинных углеводородных остатков в молекулы стабилизаторов для полиолефинов с помощью реакций этерификации и алкилирования). [c.106]

    Использование при получении термостойких волокон физических смесей полимеров практикуется сравнительно недавно [237]. Говоря о смеси полимеров как об исходном материале для получения термостойких волокон, следует прежде всего иметь в виду их совместимость, и в первую очередь совместимость в растворе, так как термостойкие полимеры не плавятся. Известно [249, с. 51], что явление молекулярной совместимости двух полимеров, даже при использовании полимеров близкой химической структуры, встречается крайне редко. Смесь полимеров, находящихся в расттворе одного и того же растворителя, как правило, расслаивается, однако этот процесс является кинетическим и в ряде случаев удается получать хотя термодинамически и несовместимые смеси, но со стабильностью вполне достаточной для того, чтобы можно было провести все операции, характерные для процессов получения волокон (смешение, фильтрацию, обезвоздушивание и т. д.). [c.195]


    В соответствии с этими представлениями полиэтилен и поли-пропилен относятся к термодинамически несовместимым, но имеющим эксплуатационную совместимость полимерам. Эксплуатационной совместимостью с полиолефинами могут обладать и полярные полимеры. Например, эксплуатационной совместимостью характеризуется стойкая к маслам смесь полиэтилена с поливиниловым спиртом в соотнопгении 95 5 [46]. [c.119]

    Рецептура таких композиций включает смесь водных дисперсий термодинамически несовместимых полимеров (в результате чего пленка приобретает миярогетерогенность, а следовательно, и мутность, вплоть до способности укрывать подложку), защитный коллоид (обес- [c.32]


Основы переработки пластмасс (1985) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Смеси полимеров



© 2025 chem21.info Реклама на сайте