Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы см также температуры

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]


    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    В табл. 25 приведены физические свойства, групповой химический состав и дизельный индекс топлив, полученных из ряда нефтей Апшеронского полуострова [12]. Эти данные подтверждают и.эложенные выше положения о влиянии природы сырья и химического состава топлив на их цетановую характеристику. Высокосмолистые беспарафинистые нефти (балаханская тяжелая, бинагадинская тяжелая, кергезская и др.) дают дизельные топлива с высоким содержанием ароматических углеводородов, низким содержанием алканов и, как следствие этого, с низким цетановым числом. Нефти малосмолистые парафинистые (сураханская, кара-чухурская и др.), а также нефти смолистые беспарафинистые (раманинская, балаханская масляная и др.) дают дизельные топлива с низким содержанием ароматических углеводородов, высоким содержанием алканов и, как следствие этого, с высоким цетановым числом. Дизельные топлива из пара-финистых нефтей имеют высокую температуру застывания. С этой точки зрения лучшим сырьем для получения дизельных топлив являются смолистые беспарафинистые нефти типа бала-ханской масляной I сорта, раманинской П сорта и им подобные. [c.84]

    Низкотемпературные свойства углеводородов и топлив харак теризуются вязкостью, ее изменением в зависимости от температуры, а также температурами застывания (потеря подвижности), кристаллизации (началом выпадения первых кристаллов) и плавления. Изменением фазового состояния определяются температурные пределы транспортирования топлив, длительного их хранения и применения. Вязкость и ее изменение в зависимости от температуры определяют возможность достаточно тонкого распыла топлива при подаче его в зону сгорания. Температуры кристаллизации составляющих топливо компонентов (например, алканов нормального строения, растворенной влаги и др.), потеря подвижности, помутнение (начало образования твердой фазы) характеризуют, как и вязкость, прокачиваемость и подвижность топлив при пониженных температурах, а также фильтруемость и возможность засорения фильтрующих элементов кристаллами, ограничивающими подачу топлива в двигатель. [c.123]


    В изменении температур плавления также можно заметить некоторые особенности. На рис. 13 показано изменение температур плавления по мере усложнения молекул углеводородов нормального строения. При переходе от молекулы с четным числом атомов углерода к следующему гомологу температура плавления повышается незначительно, а при переходе от нечетного гомолога к четному это повышение намного больше. Благодаря такой особенности гомологический ряд алканов по температурам плавления подразделяется на две подгруппы на соединения с четным числом атомов углерода в молекуле и на соединения с нечетным числом этих атомов. В каждой подгруппе наблюдается, по мере удаления от начала, некоторое уменьшение разницы в температуре плавления, но эти изменения не одинаковы в подгруппах. Гомологи с четным числом углеродных атомов плавятся при относительно более высоких температурах, чем с нечетным числом. [c.62]

    С12 — додеканы С,з — тридеканы и т. д. На оси абсцисс обозначено положение замещающего радикала. Приведены также температуры кристаллизации соответствующих нормальных алканов (н.) симметричные структуры [c.28]

    Основным параметром, определяющим протекание крекинга низших алканов, является температура. В соответствии с этим оказывается удобным рассматривать раздельно реакции при температурах до 700°, при 700—1200° и выше 1200°, хотя подобное разделение является в значительной мере условным. Интервал до 700°, соответствующий низким степеням превращения, изучен достаточно полно [8—16], О процессах, идущих выше 1200°, имеются также достоверные сведения [17]. Кинетические данные о втором интервале совершенно недостаточны, хотя этот интервал имеет наибольший практический интерес. [c.48]

    Среди нефтяных углеводородов равного или близкого молекулярного веса наиболее высокими температурами плавления обладают алканы нормального строения. Углеводородов же изостроения, а также циклических структур с температурами плавления более высокими, чем и-алканов равного молекулярного веса или с равным числом атомов углерода, известных среди синтетических индивидуальных углеводородов, в нефтяных продуктах пока обнаружено не было. [c.56]

    СНз—СН-СН2-СН2—СН—СНг-КОг В настоящее время нитрование углеводородов парафинового ряда осуществляют в паровой фазе, используя в качестве нитрующего агента окислы азота (или азотную кислоту) при 400—450° С. Образуется сложная смесь различных нитросоединений, содержащая наряду с производными, имеющими то же число атомов углерода, что и в исходном алкане, также нитропроизводные с меньшим числом атомов углерода. Так, при нитровании бутана получается 44,2% 2-нитробутана, 24,2% I-нитробутана, 5,3% 1-нитропропана, 15,8% нитроэтана и 10,5% нитрометана. Замечено, что с повышением температуры реакции выходы первичных и вторичных нитросоединений возрастают. При низких температурах выходы третичных нитросоединений всегда выше, чем вторичных и первичных. [c.89]

    До термообработки разрыхленная структура полимерной пленки, имеющая высокоразвитую межфазную поверхность, была относительно стабильна в жидкой среде. Стабильность структуры пленки, деформированной в физически активной жидкости, обусловлена адсорбцией молекул жидкости на поверхности полимера, существенно снижающей межфазное натяжение в двухфазной системе. Повышение температуры, как известно, также снижает поверхностное натяжение жидкостей и твердых тел, причем взаимодействие жидкости и полимера на межфазной границе не претерпевает существенных изменений, о чем свидетельствует отсутствие температурной зависимости краевого угла смачивания фторполимеров н-алканами [90]. Улучшение смачиваемости фторполимеров н-алканами при температуре, близкой к температуре кипения жидкости, может рассматриваться как кос ренное доказательство энергетической невыгодности процесса сокращения поверхности межфазного контакта в системе полимер - жидкость при нагревании до температуры капсулирования. [c.70]

    М.ОЖИО заметить, что с увеличением молекулярной массы температура кипения алканов также возрастает правда, разность между температурами кипения двух соседних гомологов становится все меньше. При сравнении температуры кипения структурных изомеров можно заметить, что разветвленные изомеры во всех случаях кипят ниже, чем углеводороды с неразветвленной цепью (см. табл. 2.1.2 и 2.1.3). Как правило, температуры кипения тем ниже, чем выше степень разветвления, т. е. чем меньше поверхность молекулы, что уменьшает межмолекулярные взаимодействия. [c.196]

    Отсюда значения давлений паров алканов при температуре Т могут быть выражены также формулой [c.22]

    При этом можно полагать, что молекулярными ситами требуемых размеров пор целесообразно будет депарафинировать узкие масляные фракции, не содержащие низкомолекулярных нафтенов и ароматических углеводородов, способных проникать в поры адсорбента и препятствовать адсорбции основной массы к-алканов. Из легкого масляного сырья, температура застывания которого обусловливается в основном к-алканами, можно ожидать получения этим способом достаточно низкозастывающих масел. Для среднего же и тяжелого масляного сырья, содержащего застывающие компоненты разветвленных и циклических структур, метод депарафинизации молекулярными ситами может оказаться неэффективным. Но тем не менее не исключена возможность, что молекулярные сита получат применение при обработке средних и вязких масляных фракций не для снижения их температуры застывания, а для выделения из них к-алканов как целевого продукта, необходимого для большого ряда технических надобностей. Процесс обработки молекулярными ситами сможет найти применение также и для выделения к-алканов из технических парафинов или их узких фракций. [c.165]


    В большинстве названных книг, а также в указанных ранее таблицах Ландольта — Бернштейна, за некоторыми незначительными отклонениями, приведены значения следующих функций при температурах от 298,15 до 1000 или 1500 К Нт — Яо, 8т, С°р,т, вт — Н1)1т, (Нт — Н1), АЯ, lgK/ для газообразного состояния— нор.мальных алканов до Сго, нормальных алкенов-1 и алки-нов-1, нормальных алкилпроизводных бензола, циклопентана, цикло-гексана, изомерных алканов до Се и некоторых других углеводородов, а также наиболее часто встречающихся простейших соединений и простых веществ (графит, Нг, Ог, СО, СО2, Н2О и др.). [c.80]

    Существование таких семейств изомеров, обладающих практически одинаковыми АЯ° (а также одинаковыми АЯ и АЯ°), как показали В. М. Татевский и С. С. Яровой облегчает расчет указанных величин для различных изомеров. Так, для декана имеется 75 изомеров, но число семейств, различающихся по набору разных видов С — С-связей, равно всего 50, а для додекана, имеющего 355 изомеров, число семейств равно 137. В табл. VI, 21 приведены для различных ундеканов рассчитанные таким путем значения АЯ , АЯс и AGf для 298,15 К, причем параметры реакций образования отнесены к газообразному состоянию алкана, а теплоты сгорания даны для жидкого и для газообразного состояний. Описанный метод был использован В. М. Татевским (частично совместно с С. С. Яровым) для построения аналогичных систем расчета и других свойств алканов теплоты испарения при разных температурах, мольного объема, рефракции, логарифма давления насыщенного пара, констант равновесия в реакциях образования из простых веществ, магнитной восприимчивости. Было описано также обобщение метода для соединений других классов и предложено квантово-механическое обоснование его [c.232]

    Кристаллы гексагональной сингонии способны существовать при повышенных температурах вплоть до температуры плавления н-алкана кристаллы же других сингоний существуют при пониженных температурах, ниже так называемой температуры перехода, вполне определенной для данного н-алкана. Кристаллы могут переходить из одной сингонии в другую при кристаллизации н-алкана из расплава или раствора в каком-либо растворителе, при плавлении кристаллов, а также в твердой фазе (рекристаллизация). Переход кристаллов н-алканов из одной сингонии в другую полностью обратим. Температура перехода для индивидуальных н-алканов является физической константой, так как при достижении такой температуры скачкообразно изменяются физические свойства, например плотность, теплоемкость, коэффициент расширения и др. Так, переход кристалла н-алкана из гексагональной сингонии в ромбическую сопровождается тепловым эффектом, рав- [c.81]

    Изучение кристаллической структуры индивидуальных н-алканов [78] показало влияние четного и нечетного числа атомов углерода в молекуле на температуру перехода, фазовое состояние (рис. 22), а также на кристаллическую структуру. [c.84]

    Из представления о соответствии между гетерогенным зарождением и обрывом цепей [98] следует не только возможность вычисления скорости гетерогенного зарождения ради калов, если известны вероятность рекомбинации их на данной химически нереакционноспособной поверхности и равновесная концентрация радикалов при температуре стенок, но также независимость скорости радикально-цепной реакции от гетерогенного фактора [103, 98], несмотря на участие поверхности в процессе. Более того, скорость цепной реакции может даже оказаться не зависящей от свойств поверхности, так как равновесная концентрация радикалов возле стенки зависит только от температуры, а не от свойств стенок [98]. Возможно, что такого рода случай реализуется при термическом крекинге алканов [98, 104]. [c.47]

    Можно указать на ряд уравнений, соответствующих другим методам сравнительного расчета. Так, Татевский и соавторы (см. [108а I) в числе различных зависимостей вывели связь между некоторыми свойствами алканов одной гомологической группы (в том числе Ig/ ), которые являются частными примерами соотношения (III.2). В этой же работе использованы линейные зависимости между температурой кипения и плотностью высших алканов, также являющиеся примером соотношения (III.2). [c.84]

    Наиболее удобным методом получения хлоруглеродов является метод исчерпывающего хлорирования алканов в кипящем слое катализатора во избежание взрывного характера процесса при условии значительного избытка хлора. Гусейнов и сотр. [160, 161] изучали исчерпывающее хлорирование пентана и изопентана в кипящем слое мелкодисперсного контакта активированный уголь, кварцевый песок, пемза) при 350—450° С и молярном отношении С1г С5Н12 = 14 1. В случае пентана в зависимости от температуры реакции получен следующий состав продукта [160] 23—40% гек-сахлорциклопентадиена, 15—24% гексахлорбутадиена с небольшим содержанием гексахлорэтана, 12—23% тетрахлорэтилена и 10—15% I4. Изменяя условия, можно получить продукт с преимущественным содержанием желаемого хлоруглерода. Здесь мы наблюдаем наряду со ступенчатым хлорированием алканов также разложение полихлоралканов, когда протекают еще реакции дехлорирования, дегидрохлорирования и уплотнения осколков с образованием хлоруглеродов. [c.276]

    По мере повышения температуры кипения и молекулярного веса масляной фракции все большая доля углеводородов даже при меньшей симметричности и простоте структуры приобретает способность кристаллизоваться при повышенных температурах и переходит, таким образом, в категорию твердых углеводородов. Поэтому относительное содержание к-алканов в составе твердых углеводородов с повышением их температуры кипения снижается в результате увеличения содержания твердых циклических углеводородов и, возможно, изоалканов. Здесь нужно отметить, что и общее содержание к-алканов во всей массе данной фракции с повышением ее температуры кипения обычно также снижается. Это обусловливается тем, что с возрастанием молекулярного веса относительная численность к-алканов среди других возможных изомеров с равным числом атомов углерода резко уменьшается. Поэтому для большинства нефтей содержание м-алканов во фракциях светлых продуктов значительно больше, чем в масляных фракциях, а в остаточных продуктах меньше, чем в дистиллятных масляных фракциях. Вместе с этим в тяжелых остаточных продуктах вероятность существования твердых циклических углеводородов и твердых алканов изостроения возрастает настолько, что эти углеводороды могут оказаться уже главным компонентом твердых углеводородов, которые входят в состав этих продуктов. [c.57]

    Величина константы К зависит от химической структуры парафина. Наименьшие значения К наблюдаются для к-алканов. С повышением молекулярного веса к-алкаиа величина К уменьшается. Появленпе разветвлений в алкильной цепи, а также присоединение к ней колец повышает значение К. Значения К для к-алканов от С, до С е можно найти в работе Редлиха с соавторами [33]. Величина константы К для углеводородов нри изменении температуры не остается постоянной и возрастает с повы-шенпем температуры. Поэтому повышение температуры сказы- [c.140]

    В пределах однотипных структур устойчивость комплекса возрастает с удлинением прямой алкильной цепи. Это правило относится также и к к-алканам устойчивость комплекса и верхний предел температуры его существования возрастают с увеличением длины цепи к-алкана, а следовательно, и его молекулярного веса. [c.141]

    Гидрогенолиз циклопентана исследован [243] в интервале температур 125—330 °С на серии металлических катализаторов VIII группы, а также на Ре/АЬОз и Си/МгОа. Исследование проводилось на образцах катализаторов, содержащих 0,05, 0,2, 1,0 и 5,0% Р1, 1% Рс1, 0,075% №, 1 и 10% №, 5, 10 и 20% Со, 10% Си, 1% Ре, а также по 0,1% Ки, Оз и 1г. В присутствии Р1- и Рс1-ка-тализаторов гидрогенолиз циклопентана протекает селективно с образованием только к-пентана Рс1 малоактивен и быстро отравляется, Ре- и Си-катализаторы неактивны даже при 450 °С. В присутствии КЬ- и 1г-катализаторов при температурах ниже 200 °С также образуется только м-пентан при повыщении температуры увеличивался выход алканов состава 1—С4. На Со-, N1-, Ни- и Оз-катали-заторах гидрогенолиз циклопентана протекает во всем исследуемом интервале температур с высоким выходом низкомолекулярных углеводородов. При повышении температуры выход низших углеводородов на N1 и Со уменьшается, а на Ни, Оз, КЬ и 1г —возрастает. Отмечают, что на КЬ и 1г энергия активации образования вторичных продуктов гидрогенолиза несколько выше энергии активации реакции образования я-пентана из циклопентана. С целью выяснения пути образования низкомолекулярных углеводородов — непосредственно из циклопентана или в результате вторичных реакций -пентана — исследован гидрогенолиз циклопентана в присутствии (1% Ы1)/Л120а при различных временах контакта. Установлено, что в начальный момент образуется только н-пентан, а по мере увеличения времени контакта накапливаются низшие углеводороды. Анализ кинетических кривых привел к выводу [243], что на указанном катализаторе при малых временах контакта углеводороды состава С1—С4 образуются вместе с н-пентаном непосредственно из циклопентана. При увеличении времени контакта первичные продукты реакции подвергаются дальнейшему гидрогенолизу. [c.167]

    Показано [52], что в условиях импульсного режима при 400—540°С над Pd-катализатором [(0,6% Pd)/ /AI2O3] также протекает Сз-дегидроциклизация алканов. Правда, по активности в отношении этой реакции РЙ/АЬОз значительно уступает Р1/А120з. Что же касается Сб-дегидроциклизации, то в указанных условиях оба катализатора обладают примерно одинаковой активностью. При масс-спектрометрическом изучении превращений паров н-гексана над Pd-лентой обнаружено [53], что при давлении ЫО Па Сб-дегидроциклизация н-гексана наблюдается уже при 20 °С, а при повышении температуры до 200°С н-гексан практически целиком превращается в бензол. [c.196]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    При термическом риформинге сырьем служат прямогонные бензины. Для такого процесса характерным является дегидрирование нафтеновых углеводородов и превращение алканов в алкены. Назначение процесса — повысить октановое число бензинов, а также получить непредельные газы — пропилен и бути-лепы. Октановое число бензинов в процессе термического риформинга повышается с 50 до 70 пунктов по моторному методу, Процесс осуществляют при температуре до 550—570 °С и давлении до 7 МПа. [c.161]

    Проблема получения низкозастывающнх моторных топлив (а также масел) может быть решена включением в схемы НПЗ нового эффективного и весьма универсального процесса - каталитической гидродепарафинизации, (КГД) нефтяных фракций. Процессы КГД находят в последние гоДы все более широкое применение за рубежом при получении низкозастьшающих реактивных и дизельных топлив, смазочных масел и в сочетании с процессом каталитического риформинга (селектоформинга) - высокооктановых автобензинов. В зависимости от целевого назначения в качестве сырья КГД могут использоваться бензиновые, керосино-газойлевые или масляные фракции прямой перегонки нефти. Процесс КГД основан на удалении из нефтяных фракций н-алкановых углеводородов селективным гидрокрекингом в присутствии металлоцеолитных катализаторов на основе некоторых типов узкопористых цеолитов (эрионита, морденита, 82М-5 и др.). Селективность их действия обусловлена специфической пористой структурой через входные окна могут проникать и контактировать с активными центрами (обладающими бифункциональными свойствами) только молекулы н-алкановых углеводородов определенных размеров. В результате проведения процесса КГД (в условиях, сходных с режимами процессов гидрообессеривания газойля) достигается значительное (на 25- 60 °С) снижение температуры застывания и температуры помутнения и улучшение фильтруемости денормализатов КГД при выходах 70-90% и одновременном образовании высокооктановых бензинов. Процесс КГД наиболее эффективен при облагораживании сьфья, содержащего относительно невысокое количество н-алканов (менее 10%), переработка которого традиционными процессами депарафинизации по экономическим и технологическим причинам нецелесообразна. Использование процесса КГД позволяет значительно расширить сырьевую базу производств дизельных топлив зимних и арктических сортов. [c.212]

    Применение в качестве вытеснителя нефтепродуктов с различными пределами температур кипения и ведение процесса в сравнительно мягких рабочих условиях позволяет использовать сырье до С22 без заметного разложения н-алканов, а следовательно, и без последующей их очистки. Поскольку при температуре, поддерживаемой в процессе, крекинга компонентов сырья можао избежать, в случае тщательно очищенного сырья выжиг с адсорбента коксообразных веществ необязателен. Однако высокая активность цеолита в условиях длительной работы без регенерации или замены сохраняется лишь при использовании высокоочищенного сырья. Поэтому сырье для жидкофазного процесса нужно подвергать глубокой гидроочистке. Присутствие в контактируемом с синтетическими цеолитами сырье полярных кислород-, серу-, азот- и никельсодержащих примесей, а также непредельных соединений приводит к блокировке ими. входных окон в полости цеолитов за счет электростатических сил притяжения, имеющих весьма высокие значения при температуре жидкофазного процесса [12, 14, [c.201]

    Фракция II (200—430° С). Углеводороды состава jj—Сг- Анализ проводится на капиллярной колонке с апиезопом эффективностью 40—60 тыс. т. т. Газ-носитель водород (применение водорода всегда предпочтительнее при высокотемпературной ГЖХ, так как предохраняет неподвижную фазу от окисления). Начальная температура программы 100° С, конец 300—310° С. Скорость подъема 2°/мин. В этом интервале, кроме, конечно, нормальных алканов, определяются монометилзамещенные алканы, а также алканы изопреноидного типа строения. [c.39]

    Изомеризацию алканов Сьз—С18 проводят также на бифункциональных катализаторах нрн температурах 350—400° пол давлением 20—50 кгс см . В этих условиях в присутстви  [c.162]

    В конце тридцатых и начале сороковых годов появляются зкспериментальные работы по крекингу алканов, в которых изучают не только состав продуктов, но также кинетику термического распада индивидуальных алканов с точностью, достаточной для суждения о скорости крекинга и характере управляющих им кинетических закономерностей. В этих работах [14—20], в которых режим эксперимента регистрировали точно по сравению с ранними исследованиями [4], была изучена кинетика термического распада газообразных алканов в довольно широком интервале температуры (450 — 700°С) при атмосферном давлении, в реакторах из различных материалов (кварц, пирекс, медь, железо, монель-металл и др.), пустых или набитых кусочками материала самих реакторов. Большинство кинетических опытов были проведены динамическим методом (в струе), с предварительным подогревом газов или паров в предреакторе, малом времени контакта в реакционной зоне, с последующим химическим анализом продуктов в каждом из опытов, которые отличались, по температуре или по времени контакта. Более подробное изложение выше цитированных работ можно найти в Успехах химии [21] и кандидятской диссертации автора [221. [c.19]

    Некоторые вещества заметно катализируют термический распад алканов, вызывая его при более низких температурах. К катализаторам крекинга алканов относятся, например, железо, никель, монель-металл и др. [17—19], а также многие окислы (А12О3, СГ2О3 М0О3), которые широко используются в промышленности каталитического крекинга. [c.20]

    Изучение состава продуктов инициированного крекинга алканов показало, что в условиях инициирования происходит не только увеличение выхода метана, но и изменение соотношения направлений раопада по сравнению с обычным крекингом, которое связано не только с изменением температуры, но также с относительно возросшей ролью реакций изомеризации радикалов в индуцированном крекинге [142, 143] (табл. 8 и 9). [c.69]

    В пропан-бутановых смесях при температурах, соответствующих незначительной скорости распада пропана и заметной уже скорости распада бутана (510°), наблюдается, несмотря. на распад бутана, превращение пропана в бутан наряду с инициированным распадом пропана. Таким образом, в сме-си алканов нет аддитивности распада. Кроме того, малые ш б авкИ" бутана, распадаясь, индуцируют крекинг пропана Г)Олее подробное рассмотрение схем инициирования и тальное обсуждение результатов анализа состава продуктов" инициированного крекинга алканов (полученные методом га-, зовой хроматографии) будет дано во второй части монографии. — Кинетика инициированного крекинга омесей алканов (про- пан-бутан) описывается уравнениями, аналогичными тем, которые были приведены выще для скорости инициированного крекинга отдельных алканов, но только с некоторыми особенностями. Последние будут рассмотрены во второй части монографии. Там же рассмотрим перспективы применения инициированного крекинга алканов и смесей их как метода переработки нефтяных газов, отходящих газов крекинга, фракций петролейного эфира и нефтяных погонов на олефины—сырье для получения ценных псГЖмЩзны х материалов и многочисленных продуктов, а также как приема синтеза в смесях алканов. [c.70]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]


Смотреть страницы где упоминается термин Алканы см также температуры: [c.28]    [c.32]    [c.62]    [c.220]    [c.266]    [c.57]    [c.163]    [c.41]    [c.306]    [c.253]    [c.91]    [c.207]    [c.238]   
Руководство по газовой хроматографии (1969) -- [ c.350 ]

Руководство по газовой хроматографии (1969) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы



© 2025 chem21.info Реклама на сайте