Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Надмолекулярная структура эластомеров

    При изучении механизма разрушения эластомеров важно всегда помнить, что разрушение их происходит в ориентированном состоянии, когда удлинение при разрыве достигает сотен процентов. К моменту разрыва это уже не тот полимер, который мы взяли в исходном состоянии, поскольку надмолекулярная структура его изменилась в процессе деформации. [c.199]

    О НАДМОЛЕКУЛЯРНОЙ СТРУКТУРЕ ЭЛАСТОМЕРОВ [c.37]


    Процесс релаксации напряжения в эластомерах, в частности в резинах, связан с протеканием в них как физических, так и химических процессов (см. 2 гл. П). Физическая релаксация объясняется перегруппировкой различных структурных элементов, выведенных из состояния равновесия внешними силами, и происходящими в поле действия межмолекулярных сил. Процессы ориентации свобо)1ных сегментов определяют быструю стадию физической релаксации, протекающую при обычных температурах практически мгновенно. Именно подвижность свободных сегментов ответственна за основной процесс стеклования, которому соответствует а-процесс в уже знакомом нам (гл. I) спектре времен релаксации, приведенном на рис. П. 14 для резин из диметилстирольного каучука при 20°С. Медленная стадия физической релаксации связана с молекулярной подвижностью сегментов, входящих в элементы надмолекулярной структуры с временами релаксации, находящимися в пределах 10 —10 с (при 20 °С). Это как раз сегменты с максимальной взаимной корреляцией движений. В зависимости от размеров и типа упорядоченных микрообластей, [c.99]

    Как известно [7], эластомеры характеризуются двумя основными релаксационными механизмами. Один из них, а-процесс (рис. 12.6), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур. Он ответствен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я--процессам (>,1, 2 и Хз), наблюдаемым на высокоэластическом плато и ответственным за медленную высокоэластическую деформацию. Эти релаксационные механизмы объясняются термофлуктуационной природой различных типов микроблоков (упорядоченных микрообластей) в эластомерах. Процессы Я-релаксации характеризуются различными временами релаксации с одной и той же энергией активации. В сшитых эластомерах кроме а- и Я-процессов при высоких температурах наблюдается химическая релаксация (6-процесс), а в полярных эластоме- [c.341]

    При изучении надмолекулярной структуры полимеров методом электронной микроскопии наименьшие искажения получаются при травлении полимеров в плазме высокочастотного кислородного разряда. Это дает возможность оценить соотношение между объемом, занимаемым упорядоченными микрообластями (микроблоками структуры) независимо от их природы, и неупорядоченной частью полимера (свободные цепи и сегменты), а также средний линейный размер микроблоков. Например, для эластомеров при комнатной температуре характерна объемная доля микроблоков примерно 20%. Это значит, что 80% по объему занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Средний линейный размер структурных микроблоков 10—30 нм, что соответствует типичным размерам частиц в коллоидных системах. Малое различие в плотностях упорядоченных и неупорядоченных микрообластей (1—2%) является причиной того, что применение дифракционных методов для исследования структуры аморфных эластомеров не всегда эффективно. Некоторые полимеры в блоке характеризуются глобулярной структурой (рис. 1.12) с размерами микроблоков 12—35 нм. [c.27]


    Изменение надмолекулярной структуры эластомеров сопровождается в изменением их механических свойств, о чем свидетельствуют данные табл. 1—3. Отчетливо видно улучшение свойств вулканизатов при введении небольших количеств добавок. [c.444]

    Таким образом, из совокупности данных, полученных различными прямыми и косвенными структурными методами, следует, что в структуре эластомеров имеются упорядоченные микрообласти, которые в дальнейшем будем называть микроблоками надмолекулярной структуры эластомера. Для эластомеров доля объема, который занимают микроблоки, составляет примерно 20%, следовательно, основная масса эластомера находится в неупорядоченном состоянии (хаотически перепутанные цепи). [c.32]

    В высокоэластическом состоянии для сшитых эластомеров наблюдается сначала быстрая высокоэластическая деформация (доли секунды), а затем медленная (ползучесть). Первая объясняется подвижностью свободных сегментов, вторая — постепенным распадом и перестройкой микроблоков надмолекулярной структуры эластомера, играющих роль физических узлов. [c.119]

    Не менее своеобразный механизм деформации проявляется при. испытаниях полиизобутилена. Этот полимер при удачном выборе скорости растяжения деформируется с образованием шейки (в температурной области высокоэластического состояния, в которой образование шейки ранее не было замечено). Скачкообразный переход, характерный в момент образования шейки, объяснен быстрой перестройкой надмолекулярной структуры эластомера при растяжении. [c.217]

    Применение кальциевой и магниевой форм синтетических цеолитов в качестве вулканизующего агента хлоропреновых каучуков позволяет получать резины с высоким уровнем физикомеханических свойств Под влиянием цеолитов происходят глубокие изменения в надмолекулярной структуре эластомеров, что оказывает существенное влияние на устойчивость резин к действию агрессивных сред, к диффузии и адсорбции газов и на другие свойства [50, 52]. [c.190]

Рис. 1-9. Полосатые надмолекулярные структуры эластомеров Рис. 1-9. Полосатые <a href="/info/15779">надмолекулярные структуры</a> эластомеров
    Время жизни надмолекулярных структур в эластомерах было измерено . Результаты опытов поясняются кривыми, приведенными на рис. I. 20. Предполагалось, что при разных температурах у линейного полимера в высокоэластическом состоянии формируется надмолекулярная флуктуационная структура различной степени развитости. Если образец выдержать длительное время (месяцы) при низкой температуре Т <.То, а затем быстро [c.65]

    Часто возникает вопрос о том, какую роль в равновесной высокоэластической деформации играют надмолекулярные структуры в виде физических узлов сетки. Для ответа на этот вопрос необходимо учесть, что в некристаллических полимерах (эластомерах) структурные микроблоки упорядоченной структуры имеют флуктуа-ционное происхождение и, следовательно, характеризуются определенным конечным временем жизни. Так, для каучуков. и резин время жизни надмолекулярных образований при 20° С характеризуется временем 10 —Ю с (Х-процессы), а при повышенных температурах оно намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того чтобы достичь равновесного состояния, практически надо наблюдать за [c.60]

    Обращает на себя внимание затяжной скачкообразный неуста-новившийся режим ползучести для малых напряжений.. Например, на кривой 1 в течение первых часов наблюдается затухающее развитие деформации, поэтому обычно на этом этапе исследователи прерывают наблюдение. Затем отмечается возрастание скорости деформации и вновь ее уменьшение. Такие подъемы (ступени) повторяются и далее, пока при наблюдениях свыше 30 ч не устанавливается линейный ход вязкого течения. При снижении температуры ступенчатость процесса выражена отчетливее, а при повышении температуры, как и при увеличении напряжения, это явление постепенно исчезает, что объясняется постепенным разрушением надмолекулярных структур. Наблюдаемые подъемы деформационных кривых эластомеров соответствуют временам порядка 10 —10 с и свидетельствуют о дискретности их надмолекулярных структур и спектра времен релаксации, связанных с медленными физическими релаксационными процессами. [c.137]

    Структуру эластомеров можно представить также состоящей из свободных сегментов (тепловое движение которых квазинезависимо) и распределенных по всему объему областей молекулярной упорядоченности в виде микроблоков. Между обеими структурными составляющими наблюдается подвижное равновесие, сдвиг которого происходит при изменении как Т, так и Р. При снижении Т упорядоченность структуры полимера возрастает, причем этот процесс протекает во времени. Если выбрать малое Р, чтобы практически не происходило разрушения сформированной надмолекулярной структуры, то в процессе медленного течения полимера его надмолекулярная структура должна успевать восстанавливаться. [c.168]


    Это соответствует выходу реологической кривой на стационарный участок, параллельный оси абсцисс и характеризующийся некоторым предельным (для данной температуры) значением вязкости Цоо (рис. 6.19). Выход кривой на предельное значение соответствует некоторому времени т, характеризующему скорость образования равновесной надмолекулярной структуры (чем выше полярность эластомера, тем больше т). Например, в ПИБ равновесная структура при 298 К образуется практически в течение 1,5 сут, а в бутадиен-нитрильном эластомере для этого требуется 7 сут. Процесс молекулярного упорядочения в эластомерах наблюдается и при более высоких температурах, причем время образования равновесной структуры с повышением Т уменьшается. Контроль вязкости растворов полимеров в бензоле свидетельствует об отсутствии возможных при данных температурах химических процессов структурирования или деструкции. Повышение интенсивности молекулярного движения обеспечивает более быстрое установление равновесной структуры в эластомерах. [c.170]

    Приведенные выше механические модели называются линейными, поскольку они описывают только начальный прямолинейный участок кривой растяжения. Упругость эластомера в этой линейной области называют линейной вязкоупругостью. Надмолекулярная структура полимера в этой области меняется незначительно (малые деформации) и ее практически можно считать неизменной. [c.126]

    Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для Я-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением надмолекулярных структур — микроблоков. Различие между про- [c.347]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

    Механические модели, рассмотренные выше, ие описывают экспериментальную кривую напряжение — деформация типа кривой 1 на рис. 9.10. Это естественно, поскольку при растяжении эластомера происходят, как мы видели, изменения надмолекулярной структуры, а в механических моделях структурные превращения не учитываются. Механические модели описывают только самый начальный близкий к линейному участок кривой. Чем больше скорость деформации, тем труднее растягивать эластомер. При очень большой скорости деформации узлы флуктуационной сетки не успевают распадаться и структурных изменений не происходит. В этом случае напряжение линейно увеличивается с ростом деформации вплоть до разрыва (кривая 2). [c.126]

    Изложенные выше основы кинетической теории прочности относятся к полимерам, которые мало деформируются перед разрушением. Это полимеры, надмолекулярная структура которых в момент разрушения сохраняется такой же, как в исходном образце, а не меняется кардинально в результате ориентации, как в эластомерах. Изменение надмолекулярной структуры в эластомерах, сильно деформирующихся к моменту разрушения, приводит к тому, что зависимость долговечности от напряжения в них подчиняется закономерностям, отличающимся от тех, что описываются уравнением Журкова. [c.205]

    Для улучшения свойств полимеров (снижения хрупкости, повышения морозостойкости, облегчения их переработки) вводятся низкомолекулярные вещества — пластификаторы. Типичные значения Тст пластификаторов лежат при температурах от 173 до 223 К. Иногда в качестве пластификаторов пластмасс применяют эластомеры. В таких смесях доля пластификатора обычно невелика, и поэтому эффект действия пластификатора называют модификацией свойств полимера. Пластификация приводит к снижению Тст, вязкости, увеличению подвижности макромолекул и надмолекулярных структур. [c.199]

    Полимеры могут существовать в аморфном или кристаллическом состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно образование более сложных надмолекулярных структур, тип которых будет определять весь комплекс физико-механических и химических свойств полимера. Незакристаллизованные полимеры могут находиться в одном из трех физических состояний — стеклообразном, высокоэластическом и вязкотекучем, причем в зависимости от ряда факторов возможен переход полимера из одного состояния в другое. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного состояния в высокоэластическое называются эластомерами, с высокой — пластиками. [c.108]

    Данные по вязкости ползучести, полученные [24] при различных напряжениях сдвига (больших 3,4-10 МПа), свидетельствуют о том, что с увеличением напряжения сдвига т] уменьшается и при напряжении З-Ю" МПа не зависит от исходной структуры. Э ю явление может служить подтверждегаем структурной чувствительности вязкости ползучести т] и показывает, что с увеличением напряжения в процессе ползучести надмолекулярная структура эластомера разрушается. [c.36]

    Принимают P(ff) обратно пропорциональным упрочнению материала [7]. Так как уже в области малых напряжений может изменяться надмолекулярная структура эластомера [8], и если структурный элемент (пружина) до деформации, меньшей некоторой кри--тической бк (рис. П. 1,6), имеет величину элементарного объема активации из, то элемент, деформированный сильнее (рис. П.1,б), будет иметь м <м. [c.276]

    Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях в виде определенного рода упорядоченностей и морфологически обусловленных неоднородностей в аморфном полимере в виде кристаллических образований и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пических размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации. [c.42]

    Как указывалось выше, механизм быстрой стадии физической релаксации эластомеров можно представить себе как процесс, связанный с подвижностью свободных сегментов. За время протекания быстрой стадии (доли секунды) микроблоки не успевают распадаться и ведут себя как целое. Перестройка же надмолекулярной структуры в целом происходит медленно под действием теплового движения и напряжения. Для микроблоков, если их считать кинетическими единицами процесса релаксации и вязкого течения, энергия активации должна быть на два-три порядка выше вследствие их громоздкости. Поэтому следует предпрд цть, как [c.64]

    В дальнейшем процесс течения сопровождается развитием больших высокоэластических деформаций. Скорость высокоэластической составляющей с течением времени быстро убывает, тогда как скорость остаточной (вязкой) составляющей при этом возрастает и достигает установившегося значения. Уменьшение вязкости г в процессе течения при сравнительно больших напряжениях может быть обусловлено либо уменьшением М полимера, либо изменением его исходной надмолекулярной структуры. Так как при 7 <373К молекулярная масса эластомера не изменяется, понижение т) может быть связано лишь с изменением его структу- [c.163]

    Первичные (химические) и вторичные (ван-дер-ваальсовы) поперечные связи образуют первичную и вторичную пространствен-н ле сетки в полимерах. При изучении деформации сшитых эластомеров было установлено существование дополнительной сетки с вторичными узлами двух видов. Один вид узлов при деформации необратимо разрушается, а другой после снятия нагрузки восстанавливается. Ван-дер-ваальсовы узлы в виде зацеплений не играют существенной роли в вязком течении, так как их время жизни менее 10 с, тогда как физические узлы в виде микроблоков надмолекулярных структур имеют время жизни 10 —10 с и определяют характер процесса Я-релаксации (см. гл. 5) и вязкое течение полимеров. [c.167]

    Для каждого полимера существует некоторое критическое значение напряжения Ркр, ниже которого разрушение надмолекулярных структур происходит медленно, а выше —быстро. Как следует из рис. 6.21, при малых Р (до 0,07 МПа) для эластомера СКД С/ = 23 кДж/моль (в. зкое течение определяется процессом разрушения надмолекулярной структуры), а при Р = 0,17 МПа происходит переход к значению 7 = 8 кДж/моль (процесс течения связан с движением свободных сегментов). [c.171]

    Экспериментальные данные для одного из эластомеров приведены на рис. 12.7. Как видно, наклоны прямых, а следовательно, энергия активации для всех Я-процессов одна и та же. Она равна 54,4 кДж/моль для СКС-30 и 50,5 кДж/моль для СКМС-10. При этом значение энергии активации Я-процессов не зависит от того, сшит или не сшит эластомер. Согласно трактовке природы Я-процессов, они связаны с временем жизни различных микроблоков надмолекулярной структуры флуктуацнонной природы, причем кинетической единицей для всех микроблоков является так называемый связанный сегмент [7.  [c.342]

    Надмолекулярная структура. Метод ЯМР позволяет определять гетерогенность структуры эластомеров и измерять размер гете-рофазных включений, поскольку в таких системах ядра с различной подвижностью могут иметь разные времена релаксации. [c.275]

    Антчак В. К- с сотр. [14] выдвинули концепцию о наименьших элементах надмолекулярных структур (НЭНС), которые, по его мнению, определяют основные черты технологического поведения полидисперсных и полимолекулярных эластомеров. [c.75]

    ХСПЭ хорошо совмещается со многими синтетическими смолами, термопластами и эластомерами [12, 43], придавая покрытиям на их основе эластичность и повышенную прочность к удару. В свою очередь смолы повышают твердость покрытий из ХСПЭ и улучшают адгезию, увеличивают жесткость системы. Для увеличения твердости покрытий на основе ХСПЭ применяют меламино- и мочевиноформальдегидные смолы [42], высокостирольные бута-диен-стирольные сополимеры [44]. Введение эпоксидной смолы в композиции с ХСПЭ ускоряет сушку и улучшает адгезию покрытий, создает стабильную надмолекулярную структуру [45]. Высокомолекулярные эпоксидные смолы и фенокси-смолы способствуют устранению липкости пленок [44]. Непредельные полиэфирные смолы, тощие алкиды, циклогексаноновые и кумарон-инденовые смолы увеличивают твердость и повышают экономичность процесса получения покрытий [44]. ХСПЭ хорошо совмещается также с ПЭ [46], ПВХ, ХПВХ, ХПЭ и хлорированным каучуком [47]. [c.173]


Смотреть страницы где упоминается термин Надмолекулярная структура эластомеров: [c.172]    [c.190]    [c.391]    [c.57]    [c.106]    [c.61]    [c.137]    [c.140]    [c.168]    [c.353]    [c.189]    [c.566]    [c.286]    [c.22]   
Процессы структурирования эластомеров (1978) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Структуры надмолекулярные

Эластомеры



© 2025 chem21.info Реклама на сайте