Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловое старение термическое окисление

    Одним из основных химических агентов, вызывающих старение органических полимеров, является кислород, контакт с которым имеется практически у всякого полимерного изделия в условиях эксплуатации. Химические реакции полимеров с кислородом, как и в низкомолекулярной химии, называются реакциями окисления. Окисление полимеров может активироваться различными факторами тепловым воздействием термоокислительное старение), солями металлов переменной валентности (отравление полимера металлами), светом, излучениями высоких энергий (световое и радиационное старение), механическими воздействиями (утомление). Распад полимерных молекул может протекать также под действием высоких температур и в отсутствие кислорода (термическая деструкция, деполимеризация и тепловое старение), под влиянием озона (озонное и атмосферное старение), химических веществ, расщепляющих функциональные группы в полимерах, например, путем гидролиза (химическая деструкция). [c.178]


    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Скорость окисления масла с повышением его рабочих температур на каждые 10°С примерно удваивается. Поэтому высокая тепловая напряженность деталей форсированных двигателей и интенсивный контакт с высоконагретыми газами резко ужесточает условия работы моторных масел. Это повышает опасность термического и механического разрушения масляной пленки в основных сопряженных парах двигателя, что связано с интенсификацией общего процесса старения масла и нарушения нормальной работы деталей (рис. 13). [c.34]

    Используемые в настоящее время методы изучения процессов окисления полимера включают измерение количества кислорода, поглощенного окисляющимся полимером, изучение изменений состава и свойств самого полимера или полимерного материала в ходе его окисления, изучение количества и состава летучих продуктов окисления, моделирование исследуемых процессов с помощью ЭВМ. Кроме этих методов при изучении окисления и других видов старения полимеров применяют методы электронного парамагнитного резонанса (ЭПР) [398], позволяющие идентифицировать отдельные типы свободных радикалов и следить за изменением их концентрации ядерного магнитного резонанса (ЯМР) [398, 399] и тонкослойной хроматографии [400], используемые для идентификации низкомолекулярных добавок, а также масс-спектроме-трии [401, 402] и газовой хроматографии [403—405], позволяющие анализировать летучие продукты деструкции. Существуют приборы, регистрирующие изменение массы (термогравиметрия) и тепловые эффекты (дифференциальный термический анализ) [c.218]


    Термическое, термоокислительное и фотоокислитель-ное разложение полиамидов изучено довольно подробно [170—176]. Показано, что при тепловом старении полиамидов (в интервале температур 353—413 К) происходит изменение их структуры и, в первую очередь, изменение степени кристалличности [177—179]. Сопоставление температурных зависимостей скорости термического окисления и накопления а-моноклинной структуры в исследованных полиамидных пленках позволяет сделать вывод о том, что изменение механических свойств при хранении может обуславливаться и структурными превращениями. Аналогичные выводы сделаны при исследовании теплового старения поликапроамида марок Вид-лон и Тарлон ХВ [180]. [c.135]


Смотреть страницы где упоминается термин Тепловое старение термическое окисление: [c.729]   
Физико-химические основы получения, переработки и применения эластомеров (1976) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Старение

Старение термическое



© 2025 chem21.info Реклама на сайте